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BOUNDED RATE COMPRESSION WITH
RATE CONTROL FOR SLICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to provisional application
Ser. No. 61/709,316, filed 3 Oct. 2012 and provisional
application Ser. No. 61/764,807, filed 14 Feb. 2013, which
are entirely incorporated herein by reference. This applica-
tion also claims priority to provisional application Ser. No.
61/764,891, filed 14 Feb. 2013, provisional application Ser.
No. 61/770,979, filed 28 Feb. 2013, provisional application
Ser. No. 61/810,126, filed 9 Apr. 2013, provisional applica-
tion Ser. No. 61/820,967, filed 8 May 2013 provisional
application Ser. No. 61/832,547, filed 7 Jun. 2013, and
provisional application Ser. No. 61/856,302, filed 19 Jul.
2013.

TECHNICAL FIELD

This disclosure relates to image processing. This disclo-
sure also relates to compression and decompression tech-
niques for image transmission and display.

BACKGROUND

Immense customer demand has driven rapid advances in
display technologies, image analysis algorithms, and com-
munication technologies, as well as the widespread adoption
of sophisticated image display devices. As just a few
examples, these devices range from DVD and Blu-ray
players that drive high resolution displays for home theaters,
to the now ubiquitous smart phones and tablet computers
that also have very high resolution displays. Improvements
in image processing techniques will continue to expand the
capabilities of these devices.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example architecture in which a source
communicates encoded data to a sink.

FIG. 2 is an example of an encoder.

FIG. 3 shows a parallel processing architecture.

FIG. 4 shows an example of a predictor and quantizer.

FIG. 5 shows example sample locations.

FIG. 6 shows examples of a coded format for compressed
samples.

FIG. 7 shows an example of a virtual buffer model.

FIG. 8 shows an example decoder.

FIG. 9 shows example logic for encoding.

FIG. 10 shows example logic for decoding.

FIG. 11 shows an example encoding and decoding sys-
tem.

FIG. 12 shows an example of a picture and a picture
parameter set.

FIG. 13 shows another example of an encoder.

FIG. 14 shows another example of a decoder.

FIG. 15 illustrates samples sets for block search.

FIG. 16 illustrates an example of indexed color history.

FIG. 17 shows an example of a portion of a slice using
substream multiplexing.

FIG. 18 shows an example of substream demultiplexing
logic.

FIG. 19 shows an example of substream multiplexing
logic.

FIG. 20 shows an example of slice timing and delays.
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FIG. 21 shows an example of 3x1 partial SADs that form
9x1 SAD.

FIG. 22 shows an example of original pixels used for
encoder flatness checks.

FIG. 23 shows an example of encoder logic.

FIG. 24 shows an example of a buffer level tracker.

FIG. 25 shows an example of encoder logic that may
implement rate control for slices.

FIG. 26 shows an example of bit trajectories over time.

FIG. 27 shows examples of offset fullness and actual
fullness.

FIG. 28 shows example threshold ranges.

FIG. 29 shows an example of short term rate control.

FIG. 30 shows an example of QP increment logic.

FIG. 31 shows an example of substream demultiplexing
in a decoder.

FIG. 32 shows indexed color history logic in a decoder.

DETAILED DESCRIPTION

FIG. 1 shows an example architecture 100 in which a
source 150 communicates with a sink 152 through a com-
munication link 154. The source 150 or sink 152 may be
present in any device that manipulates image data, such as
a DVD or Blu-ray player, a smartphone, a tablet computer,
or any other device. The source 150 may include an encoder
104 that maintains a virtual buffer 114. The sink 152 may
include a decoder 106, memory 108, and display 110. The
encoder 104 receives source data 112 (e.g., source image
data) and may maintain the virtual buffer 114 of predeter-
mined capacity to model or simulate a physical buffer that
temporarily stores compressed output data. The encoder 104
may also evaluate the encoded symbols for transmission at
a predetermined bit rate. The encoder 104 may specify the
bit rate, as just two examples, in units of bits per pixel, or in
units of bits per unit of time.

The encoder 104 may determine the bit rate, for example,
by maintaining a cumulative count of the number of bits that
are used for encoding minus the number of bits that are
output. While the encoder 104 may use a virtual buffer 114
to model the buffering of data prior to transmission of the
encoded data 116 to the memory 108, the predetermined
capacity of the virtual buffer and the output bit rate do not
necessarily have to be equal to the actual capacity of any
buffer in the encoder or the actual output bit rate. Further, the
encoder 104 may adjust a quantization step for encoding
responsive to the fullness or emptiness of the virtual buffer.
An exemplary encoder 104 and operation of the encoder 104
are described below.

The decoder 106 may obtain the encoded data 116 from
the memory 108. Further, the decoder 106 may determine
the predetermined virtual buffer capacity and bit rate, and
may determine the quantization step that the encoder 104
employed for encoding the encoded data 114. As the decoder
106 decodes the encoded data 116, the decoder 106 may also
determine the fullness or emptiness of the virtual buffer 114
and adjust the quantization step used for decoding. That is,
the decoder 106 may track the operation of the encoder 104
and determine the quantization step that the encoder 104
used. The decoder 106 decodes the encoded data 116 and
provides video data 118 to a display 110. In some imple-
mentations, the quantization step is not present in the
encoded data 116, saving significant bandwidth. Examples
of decoders 106 and encoders 104, and their operation are
described below.

The memory 108 may be implemented as Static Random
Access Memory (SRAM), Dynamic RAM (DRAM), a solid
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state drive (SSD), hard disk, or other type of memory. The
display link 154 may be a wireless or wired connection, or
combinations of wired and wireless connections. The
encoder 104, decoder 106, memory 108, and display 110
may all be present in a single device (e.g. a smartphone).
Alternatively, any subset of the encoder 104, decoder 106,
memory 108, and display 110 may be present in a given
device. For example, a Blu-ray player may include the
decoder 106 and memory 108, and the display 110 may be
a separate display in communication with the Blu-ray player.

FIG. 2 shows an example of an encoder 200. The encoder
200 encodes the video data 202. The video data 202 may
take the form of a series of successive frames 202-0, . . .,
202-x, for example. The frames 202-0, . . ., 202-x may take
the form of 2-dimensional matrices of pixel components,
which may be represented in any color space such as the
Red/Green/Blue (RGB), YUV, Luminance Y/Chroma Blue
Cb/Chroma Red Cr (YCbCr), Luminance Y/Chroma
Orange/Chroma Green (YCoCg), Alpha, Red, Green, Blue
(ARGB), or other color space. Each of the pixel components
may correspond to a spatial location. While the matrices
may be overlaid to form a picture, each of the pixel
components in the matrices are not necessarily co-located
with pixel components in other matrices.

Each pixel component may be encoded with a value
comprising a predetermined number of bits, such as eight,
ten, or twelve bits per pixel component. The encoding may
employ, as examples, 10 bit YCbCr 4:2:2, 8 bit YCbCr 4:2:2,
10 bit YCbCr 4:4:4, 8 bit YCbCr 4:4:4, 8 bit ARGB 32, or
8 bit RGB 24 encoding. The encoder 200 may receive the
pixel components of the frames in raster scan order: left to
right, top to bottom. In certain implementations, the video
encoder 200 may receive the pixel components at a prede-
termined rate. The predetermined rate may correspond to the
real-time frames per second display rate.

The video encoder 200 may include an input, predictor &
quantizer 204, a mapping and variable length coder (VLC)
206, rate controller 208, a rate buffer 210, and memory (e.g.,
DRAM) 212. The video encoder 200 receives and encodes
the pixel components. While the number of bits representing
pixel components coming into the video encoder 200 may be
constant (per pixel component), the number of bits repre-
senting each coded pixel may vary dramatically. The
encoder 200 may increase the number of bits representing
coded pixels by reducing the quantization step, or decrease
the number of bits by increasing the quantization step.

The input, predictor & quantizer 204 predicts and quan-
tizes the pixel components, resulting in quantized residuals.
In certain implementations, the input, predictor, & quantizer
204 may predict a pixel component from previously encoded
and reconstructed pixel components in the same frame, e.g.,
202-0. The mapper and variable length coder 206 codes the
quantized residuals, resulting in coded bits.

The input, predictor & quantizer 204 may use a prede-
termined initial quantization step for quantizing a predeter-
mined amount of data, such as video pixel data. The map-
ping and variable length coder 206 signals the rate controller
208, which in turn instructs the input, predictor & quantizer
204 to increment, decrement, or leave unchanged the quan-
tization parameter, as will be described in more detail below.

The mapping and variable length coder 206 may code the
quantized sample values using their natural 2’s complement
binary values. The number of bits that the mapping and
variable length coder 206 uses to code each value may be
determined dynamically by a combination of recent history
of coded values of the same pixel component and a prefix
value associated with each unit of samples.
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The rate controller 208 determines whether to increment,
decrement, or leave unchanged the quantization step. The
rate controller 208 may perform the quantization step analy-
sis, e.g., by simulating or modeling a buffer of predeter-
mined capacity that it evaluates at a predetermined bit rate.
The modeled buffer may be referred to as a virtual buffer. If
the virtual buffer is becoming full, the rate controller 208
may increase or increment the quantization step. If the
virtual buffer is becoming empty, the rate controller 2098
may decrease or decrement the quantization step. Further
aspects of this are described below with respect to rate
control for slices.

The rate controller 208 may determine the fullness of the
virtual buffer by, e.g., counting the bits that are used to
encode the input received over a given number of input
samples and subtracting the product of the predetermined bit
rate, in bits per sample, and the number of input samples.
The number of input samples may be as few as one sample.

A decoder may decode the encoded data starting with the
initial quantization step. As the decoder decodes the encoded
data, the decoder may also determine the fullness of the
virtual buffer. The decoder may determine the fullness or
emptiness by observing the amount of bits that were used to
encode an amount of decoded data corresponding to the
number of input samples. The decoder may then determine
the quantization step decision that was made at the encoder
200. Accordingly, the encoder 200 does not need to explic-
itly transmit the quantization step to the rate controller or
any other logic in the decoder.

FIG. 3 shows a parallel processing architecture 300. The
demultiplexer 302 receives the input pixel components 304,
and separates each pixel component into constituent parts,
e.g., Alpha 306, Red 308, Green 310, and Blue 312. The
prediction & quantization blocks 314, 316, 318, and 320 are
associated with a particular one of the constituent parts of
the pixel components. There may be any number of such
blocks and they may operate in parallel. In the case of a
format with four pixel components, such as ARGB, each
prediction & quantization block processes a particular com-
ponent part. When the architecture 300 processes pixel
components with fewer constituent parts than prediction &
quantization blocks, then some of the prediction & quanti-
zation blocks need not operate for the processing of those
pixel components. The prediction & quantization blocks
314-320 may provide quantized residuals to a particular one
of component mappers 322, 324, 326, and 328. The com-
ponent mappers 322-328 may also operate in parallel.

The mappers 322-328 provide mapped quantized residu-
als ‘E’ to a multiplexer 330. The multiplexer 330 multi-
plexes the mapped quantized residuals ‘E’ into a residual
stream 332 that is provided to the variable length coder 334.
Alternatively, there may be a variable length encoder asso-
ciated with each component mapper, and the multiplexer
330 may multiplex the variable length encoded quantized
residuals output by the multiple variable length encoders.

FIG. 4 shows an example of a predictor and quantizer 400.
The predictor and quantizer 400 includes a buffer 402, first
delay logic 404 (implementing, e.g., six sample delay), a
prediction engine 406, and second delay logic 408 (imple-
menting, e.g., 3 sample delay). The buffer 402 may store the
previous reconstructed image line. The prediction engine
406 receives the current pixel component ‘X’, reconstructed
pixel components ‘w’, ‘t’, ‘s’, ‘g’, °¢’, ‘b’, ‘d’, and ‘h’ from
the previous line from the first delay blocks 404, and
reconstructed pixels from the left on the current line, ‘k’, ‘r’,
‘f”, ‘@’ from the second delay blocks 408.
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In order to use reconstructed pixel components, instead of
the input pixel components, the quantizer 410 may provide
quantized residuals E' to an inverse quantizer 412. The
inverse quantizer 412 inverse quantizes the quantized
residuals. The reconstructed pixels ‘Rx’ are generated from
the quantized residuals E' and the predicted values from the
prediction engine.

The prediction engine 406 may include an Edge predic-
tion engine 414, LS prediction engine 416, Left prediction
engine 418, and ABCD prediction engine 420. As described
above, the prediction engine 406 predicts the current pixel
component ‘x’ from reconstructed pixel components ‘w’, ‘t’,
s’y ‘g’, ‘¢’ ‘b, ‘d’, and ‘h’ from the previous line, and
reconstructed pixels from the left on the current line, ‘k’, ‘r’,
‘7, “a’, thereby resulting in a residual E" representing the
pixel component x’.

The operation of the prediction engine 406 will now be
described with reference to FIG. 5, which shows example
pixel components 500. The prediction engine 406 may
adaptively predict pixel components from neighboring
reconstructed pixels of the line above, and the left pixels of
the same line of the pixel to be predicted. For example, the
prediction engine 406 may predict pixel ‘x” from a combi-
nation of any of the reconstructed pixels ‘t’, ‘s’, ‘g’, ‘c’, ‘b’,
‘&, b,k ‘r’, f, and ‘a’.

The spatial prediction adaptively chooses an output from
one of the four candidate prediction engines: the Edge
prediction engine 414, LS prediction engine 416, Left pre-
diction engine 418, and ABCD prediction engine 420 as its
predictor for the current pixel component. The choice may
be made according to the prediction errors determined for
one or more previous reconstructed pixel components, con-
sidering the candidate predictors. This operation may be the
same in both the encoder and decoder, and no prediction
control information needs to be included in the encoded
data. The decoder may implement an identical prediction
mode algorithm and deduce the prediction mode used by the
encoder. Once a predictor is selected, the value of each
sample is predicted using the selected predictor. The residual
value E" is calculated as the difference between the pre-
dicted value and the actual sample value.

LS Prediction Engine 416

The LS prediction engine 416 may produce a predicted
value Px of the current sample ‘x” according to the follow-
ing:

if (¢ >= max(a, b))
Px = min(a, b);
else {
if (¢ <= min(a, b))
Px = max(a, b);
elsePx =a+b-c}

ABCD Prediction Engine 420.

The ABCD prediction engine 420 may produce the pre-
diction value Px=(a+b+c+d+2)/4. This is an average of four
neighboring samples.

Left Prediction Engine 418

The Left prediction engine 418 may use the reconstructed
value of the left pixel of the current sample as its prediction
value. In other words, Px=°a’.

Edge Prediction Engine 414

The Edge prediction engine 414 may employ more neigh-
boring pixels than the LS prediction engine 416. The Edge
prediction engine 414 may detect an edge at several possible
angles around the current sample ‘x’, and use the edge
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information in the prediction. The Edge prediction engine
414 may search, as examples, for directions of an edge that
are horizontal, vertical, 45 degree, 135 degree, about 22.5
degrees and about 157.5 degrees. The Edge prediction
engine 414 may be implemented in two stages. The first
stage is edge detection. The second stage is edge selection.

Some options may be specified for the prediction func-
tion. The use of the reconstructed sample value ‘a’, which is
immediately to the left of ‘x’, may be disabled by config-
uring the Edge prediction engine 414 with a parameter such
as NOLEFT=1. Avoiding the use of sample ‘a’ may allow
more time for the prediction, quantization and inverse quan-
tization path to function, which may be an advantage in high
throughput systems where circuit timing may make it dif-
ficult to reconstruct sample ‘a’ quickly. The use of the
reconstructed sample values ‘a’ and ‘f”, which are the two
samples immediately to the left of ‘x’, may be disabled by
configuring the Edge prediction engine 414 with a parameter
such as NOLEFT=2 (also referred to as NO2LEFT). This
allows even more time for the prediction, quantization and
inverse quantization path to function. When circuit timing
needs three clock cycles for prediction, quantization and
inverse quantization, the use of NOLEFT=2 facilitates a
throughput of one sample per clock.

The individual prediction engines from the four listed
above may be selectively enabled and disabled. For certain
classes of content, better performance may be obtained by
utilizing a subset of the prediction functions. When predict-
ing samples along the top and left edges of an image, for
example, the Left prediction engine 418 may be employed,
as specified below.

NOLEFT=1 Option

When NOLEFT=1, the reconstructed sample value ‘a’ in
the LS prediction engine 416, ABCD prediction engine 418,
and Edge prediction engine 420 is replaced by its prediction
Pausing the reconstructed samples ‘f*, ‘g’, and ‘¢’ according
to the following:

if (ABS(g—c) > ABS(g-1)*3)
Pa =¢;
else {
if (ABS(g-1) > ABS(g—¢)*3)
Pa = f;
else Pa = (f+c+1)/2;}

NOLEFT=2 Option

When NOLEFT=2, the reconstructed sample values ‘f’
and ‘a’ in the LS prediction engine 416, ABCD prediction
engine 418, and Edge prediction engine 420 are replaced by
their predictions Pf and Pa using the reconstructed samples
‘r’, ‘s’, ‘g’, and ‘c’. The prediction of ‘a’ may use the same
approach as in NOLEFT, except that ‘f” is replaced by Pf
according to the following:

Pf=(r+g+s+c+2)/4;

Edge prediction engine with NOLEFT=0, NOLEFT=1,
NOLEFT=2

When NOLEFT=0, the left sample is used in the predic-
tion, and the following may be applied to the edge detection:

if ( (2*ABS(a—c) > 6*ABS(c-b)) && 2*ABS(a—c) > 6*ABS(c—g)
&& 2*ABS(a—c) > 6*ABS(a-1) )

edgel = 0;
strengthl = ABS(c-b);
¥



US 9,451,250 B2

7

-continued

8

-continued

else if ( 2*ABS(b-c) > 6*ABS(c-a) && 2*ABS(c-d) >
6*ABS(c-a) )

edgel =1;

strengthl = ABS(c-a) ;
¥
else
{

strengthl = max_ strength;
edgel =7;

if (2* ABS(a—g) > 6*ABS(a-b) && 2* ABS(a-g) > 6*ABS(f-c) )

edge2 = 2;
strength? = ABS(a-b);

¥
else if( 2* ABS(a-b) > 6*ABS(a-g) && 2* ABS(a-b) >
6*ABS(s-1) )

edge2 = 3;
strength? = ABS(a-g) ;

}

else

strength? = max_ strength;
edge2 =7;

}
if (2*ABS(a-g) > 6*ABS(a—d) )

10

15

strength2 = max_ strength;
edge2 = 7;

if (2*ABS(s-1) > 6*ABS(f-b) )

edge3 = 4;
strength3 = ABS(f-b);

}
else if ( 2*ABS(f-c) > 6*ABS(f-t) )

edge3 = 5;
strength3 = ABS(f~t);

else

strength3 = max_ strength;
edge3 =7;

When NOLEFT=2, the two left samples are not used in
the prediction, and the following may be applied to the edge
detection:

if ( (2*ABS(r-s) > 6*ABS(g-5)) && 2*ABS(r-s) > 6*ABS(t-5)

&& 2*ABS(1—s) > 6*ABS(k-1) )

25
edge3 = 4; edgel = 0;
y strength3 = ABS(a-d) ; strengthl = ABS(g-s);
else if ( 2*ABS(a-b) > 6*ABS(a-s) ) else if ( 2*ABS(s-g) > 6*ABS(r-s) && 2*ABS(c-s) >
doed = 5 30 6*ABS(s-1) )
eages =
strength3 = ABS(a-s) ; edgel = 1;
strengthl = ABS(r-s);
else }1
clse
strength3 = max_ strength; {
edge3 =7; 35 strengthl = max_ strength;
} edgel =7;
}
When NOLEFT=1, the left sample is not used in the {27 ABSEoD > GTABS(g) && 27 ABS(-) > OTABS ()
b
prediction, and the following may be applied to the edge edge2 = 2;
detection: 40 strength? = ABS(r-g);
else if ( 2* ABS(r-g) > 6*ABS(t-r) && 2* ABS(r-g) >
6*ABS(k-w
if ((2*ABS(f-g) > 6*ABS(c—g)) && 2*ABS(f-g) > 6*ABS(s-g) &)
&& 2*ABS(f-g) > 6*ABS(1-f) ) edge? = 3;
{ deel = 0 45 strength2 = ABS(t-1);
edgel =0; }
) strengthl = ABS(c-g); else
el*se if ( 2*ABS(g-c) > 6*ABS(f-g) && 2*ABS(b-g) > strength? = max_ strength;
6*ABS(g-1) ) edge2 =7;
eggelt:ll; ABS(-g) 50 if (2*ABS(t-r) > 6*ABS(1—c) )
strengthl = -g);
¥ edge3 = 4;
else strength3 = ABS(r-c);
Sgeﬂlgthl; max_strength; else if ( 2*ABS(r—g) > 6*ABS(r-w) )
eagel = /; 55
} edge3 = 5;
if (2% ABS(f-s) > 6*ABS(f-c) && 2* ABS(f-s) > 6*ABS(r-g) ) strength3 = ABS(r-w);
edge2 = 2; ilse
strength? = ABS(f-c);
¥ 60 strength3 = max_ strength;
else if ( 2* ABS(f-c) > 6*ABS(s-f) && 2* ABS(f-c) > edge3 = 7;
6*ABS(r—t) ) 1 ’
edge2 = 3;
) strength2 = ABS(s-1); The parameter ‘max_strength’ may be defined as the
else 65 largest possible absolute difference between two samples.
{ This parameter may be related to the pixel data format, e.g.,

for 8-bit data, max_strength=255, for 10-bit data, max_
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strength=1023. The same edge selection logic may be
applied in each case of NOLEFT=0, NOLEFT=1 and
NOLEFT=2, except that the sample value ‘a’ may be
replaced by its prediction Pa when NOLEFT=1 or
NOLEFT=2, and the sample value ‘f” may be replaced by its
prediction Pf when NOLEFT=2:

if (strengthl <= strength2)

if (strengthl <= strength3)
{

edge = edgel;
strength = strengthl;
¥
else
{
edge = edge3;
strength = strength3;
¥
¥
else
{
if (strength2 <= strength3)
edge = edge2;
strength = strength?2;
¥
else
{
edge = edge3;
strength = strength3;
¥

¥

if (strength == max_ strength || edge == 7)
Px = (a+c+b+d+2) / 4;

else

switch(edge)
case 0: Px = a;
case 1: Px = b;
case 2: Px =d;
case 3: Px =¢;
case 4: Px = h;
case 5: Px = g;
¥

Predictor Selection

A Unit may be considered to be a logical grouping of
adjacent samples of the same component. For example, the
Unit size may be selected to be equal to two. A Unit size may
be the number of samples comprised by a Unit. In alternative
implementations, the Unit size may be selected to have a
value of one, three, four or another value. In one embodi-
ment, when the Unit size is selected to be equal to two, for
every pair of samples of one component, a selected set (up
to all) of the candidate predictors may be evaluated using the
previous pair of samples of the same component, and the
predictor that performs best for that previous pair is selected
for the current pair. The selection of a predictor may be made
on boundaries that do not align with Units. There may be
certain exceptions under which the set of candidate predic-
tors is restricted, for example when samples to the left or
above are not available, or for example when one or more
predictors are not enabled.

For the first pair of samples of the image, e.g., the two
samples on the left edge of the top line, the Left prediction
engine 418 may be selected as the predictor. Further, for the
first pair of samples of each line other than the first, the LS
prediction engine 418 may be selected. Sample values that
are not available for use in prediction may be assigned a
pre-determined value, for example one half of the maximum
range of sample values.
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For other pairs of samples, the predictor may be selected
according to the estimated prediction errors of the left pair
of samples, which may be calculated by all four predictors.
When the reconstructed value of the current sample ‘x’ is
found, the estimated prediction error for the current sample
can be calculated as follows:

err_sample=4BS(x-Px)

In the above equation, Px is the predicted value of the
current sample from each of the four predictors. The pre-
diction error of one predictor is the sum of err_sample over
both samples in a pair of samples for a predictor. The
predictor with the smallest prediction error is then selected
as the predictor for the next pair of samples of the same
component.

Note when NOLEFT=1, the prediction error of the left
sample is not available. Assuming the current sample is ‘x’
in FIG. 5, then if NOLEFT=0, the prediction engine selected
by the left pair, the samples of ‘f” and ‘a’, is used for the
current sample pair. [f NOLEFT=1, the predictor selected by
the smallest prediction error of the available left pair may be
used, e.g., the samples of ‘r’ and ‘f” if ‘X’ is the second
sample of the pair, or samples of ‘r’ and ‘k’ is ‘X’ is the first
sample of the pair. If NOLEFT=2, the predictor selected by
the smallest prediction error of the samples of ‘r’ and k’
may be used if ‘X’ is the first sample of the pair, or samples
of ’k” and its immediately left one if ‘X’ is the second sample
of'the pair. The residual or error value E" may be determined
as: B"=x-Px.

The reconstructed sample value of x’,
predictions, may be obtained as follows:

for use in future

x'=Px+E"™*QuantDivisor;
if (x'<0)x'=0;

else if x>MAXVAL)x'=MAXVAL;

The value QuantDivisor is defined below. MAXVAL is
the maximum value that can be coded by the uncompressed
video sample word size, e.g., 1023 for 10 bit video, and 255
for 8 bit video. In one implementation, Cb and Cr are
non-negative integers.

The operation of the mapper and variable length coder
206 is described with reference to FIG. 6, which shows
examples of sample units 600, which are also referred to as
Units. The mapper and variable length coder 206 may use
entropy coding to code sample values using their natural 2°s
complement binary values. The number of bits used to code
each value may be determined dynamically by a combina-
tion of the recent history of coded values of the same
component and a prefix value associated with each Unit 605
of samples. In certain implementations, a Unit 605 com-
prises two samples 610 of a particular component type, e.g.,
Y, Cb or Cr, or Alpha, R, G or B. In some implementations,
the Cb and Cr samples are coded together in one Unit. The
same set of components may be used for the prediction of
the number of bits.

Each Unit 605 of samples has a Unit sample size. A Unit
sample size may be the size in bits of each of the samples in
a Unit. The Unit 605 sample size may be large enough to
code each of the samples contained in the Unit 505, and it
may be larger. The size of one sample may be the number of
bits used to code the sample’s value in 2°s complement. For
example, a value of O has a size of 0, a value of -1 has a size
of 1, a value of -2 or 1 has a size of 2, a value of -4, -3,
2 or 3 has a size of 3, and so on.
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A Unit 605, may have a maximum sample size, which is
the maximum of the sizes of all the samples in the Unit 605.
A Unit 605 may also have a predicted size. In one imple-
mentation, if the predicted size is greater than or equal to the
maximum sample size, then the Unit 605 sample size is
equal to the predicted size. In one implementation, if the
maximum sample size is greater than the predicted size, then
the difference, which is always non-negative, is coded in the
prefix value 612, and the maximum sample size may be used
as the Unit 605 sample size. In another implementation, if
the maximum sample size is different from the predicted
size, then the difference, which may be positive or negative,
is coded in the prefix value 612. The prefix value may use
unary coding, e.g., for implementations with non-negative
prefix values, the value 0 has the code 1 (binary), the value
1 has the code 01, the value 2 has the code 001, and so on.
The Unit sample size is the sum of the predicted size and the
prefix value 612. For 10 bit video, the greatest possible
sample size is 10, and the smallest possible predicted size is
0, so the greatest possible prefix value is 10, which occupies
11 bits i.e. 0000 0000 001. For implementations with signed
prefix values, signed prefix values may be unary coded.

The predicted size may be a function of the sizes of
previously coded samples. In one implementation, the pre-
dicted size is the average, with rounding, of the sizes of the
samples of the same component of the previous two
samples, e.g., of the previous Unit, given that the Unit size
is 2. If the Unit size is 4, the predicted size may be the
average of the sizes of the four samples of the same
component of the previous Unit. If the Unit size is 3, the
predicted size may be generated by the average of the sizes
of the last two samples of the same component of the
previous Unit, thereby avoiding division by 3. Alternatively,
if the Unit size is 3, the predicted size may be generated as
a weighted sum of 3 samples of the previous unit of the same
component. The weights may be, for example, (Y4, Y4, 12).

For example, if a component of an image, after quanti-
zation, is such that the size of the samples is 2 for many
consecutive samples, then the predicted size is 2, and the
prefix value is 0. Therefore the prefix code is ‘1°, and each
sample is coded using 2 bits, and a Unit of two samples has
a total of 5 bits. In the event of a transient causing a sudden
increase in the sample size, the prefix value codes the
increase in the sizes. In the event of another transient
causing a sudden decrease in the sample size, the prefix
value may be 0 and the Unit sample size may be equal to the
predicted size, which may be in excess of the sizes of the
samples in the Unit. Therefore each sample may be coded
with a number of bits equal to the predicted size, even
though their own sizes are less. Following a transient, in the
absence of another change in sample sizes, the Unit sample
size and predicted size converge again. This technique
results in very efficient coding of samples, given that the
sizes of the samples may change from Unit to Unit, particu-
larly when the sizes do not frequently change very rapidly.

The delta size Unit variable length coding (DSU-VLC)
scheme facilitates efficient encoding and decoding at high
speed in hardware, in part because it does not rely upon VLC
tables. The number of bits in a Unit to be decoded is
determined from the prefix value (counting zeros) and the
predicted size, which can be determined before encoding or
decoding the current Unit. It is feasible to encode or decode
one Unit per clock, and faster decoding approaches are also
feasible. Encoding can encode multiple Units in parallel, for
greater throughput. The Unit size may be selected to be
greater than two for various reasons. For example, larger
Unit size may be chosen where the usage imposes a through-
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put requirement that cannot practically be met with a Unit
size of 2, in which case a Unit size of 3 or 4 may be used.

Referring again to FIG. 4, the quantizer 410 quantizes the
residuals E", which in general includes the case of lossless
coding, using a quantization parameter Quant. Quant may
take on values ranging from O, signifying lossless, to the
value that corresponds to the highest value of Quant
Divisor| | (see below). With an exemplary set of values of
QuantDivisor and QuantOffset shown below, the value of
Quant ranges from O to 17.

The quantizer 410 may perform quantization on the
residual value E" as follows:

if (Quant = 0)

E' =E";
else

if (B" >=0)

E' = (E" + QuantOffset[Quant]) / QuantDivisor[Quant];
else E' = (E" - QuantOffset[Quant]) / QuantDivisor[Quant];

where division may be with truncation, as, e.g., in the ‘C’
language.

The set of divisors may be:

int QuantDivisor[ 1={1, 3, 5,7, 9, 10, 12, 14, 16, 18, 20,
24, 28, 32, 48, 64, 128, 256},

The associated set of offsets, the rounding constants, may
be:

int QuantOffset[ ]={0, 1, 2, 3,4, 4,5, 6,7, 8, 9, 11, 13,
15, 23, 31, 63, 127};

In this approach, there are 4 odd-valued divisors (3, 5, 7
and 9), and seven that are products of one of these odd-
valued divisors and one of five other values, each of which
is a power of 2: 2**N. As a result, in one implementation,
the quantization function supports 4 odd-valued divisors.

The use of this particular set of values of Quant
Divisor| | provides good compression with low complexity.
Note that division by the odd numbers can be performed in
hardware using multiplication by one of a small set of
optimized constant values.

In other implementations, the divisors may be selected
such that they do not have odd factors. For example:

int QuantDivisor[ ]={1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096},

int QuantOffset[ 1={0, 0, 1, 3,7, 15,31, 63, 127,255, 511,
1023, 2047}

Rate Control

The value of Quant is determined via a rate control
technique, which may be performed identically in both the
encoder and decoder. The rate control technique may base its
decisions on a measure of the activity of the most recently
coded predetermined number of pixel components and on
the fullness of the buffer model. The predetermined number
may be, for example, 3, 2, or some other number. The value
of Quant may be updated once per coded predetermined
number of pixel components.

FIG. 7 shows an example of a virtual buffer model 700.
The virtual buffer model 700 is in communication with a
bitstream source 702, the rate controller 208, and a bitstream
consumer 706. The virtual buffer model 700 models the
behavior of a rate buffer where the output bit rate is a
specified bit rate. The specified bit rate may be in units of
bits per pixel or per group of pixels, or it may be in other
units such as bits per unit of time, such as bits per second.
The bitstream consumer 706 may model the consumption of
bits at a specified rate. The bitstream source 702 may be the
output of the mapper and variable length coder 206, for
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example. A group of pixels may comprise a predetermined
number of pixels, for example two, three, four, or some other
number.

Bits enter the virtual buffer model 700 when they are
created. For example, the number of bits used to code a
Group is added to the model 700 when the Group is coded.
Bits leave the virtual buffer model 700 according to a
pre-determined schedule. For example, the schedule may
specify a constant rate in units of bits per group. The virtual
buffer model 700 may be implemented as an accumulator
708, in which one value is added and other value is sub-
tracted per Group. Alternatively, the schedule of removing
bits from the virtual buffer model 700 may be in units of bits
per second. Alternatively, the times at which bits are added
to or subtracted from the buffer model 700 may be finer or
coarser than a Group, and may use a construct other than a
Group, such as a sample, a macroblock, a slice or a picture.
In order to model the behavior of a First In First Out (FIFO)
buffer, the fullness of the virtual buffer model 700 may be
clamped to 0 when subtracting a number of bits from the
fullness that would otherwise result in a negative value of
fullness.

When the output bit rate used in the virtual buffer model
700 is less than or equal to the actual bit rate at which bits
are removed from the rate buffer in an encoder, and the rate
controller 704 ensures that the virtual buffer model 700 does
not overflow, the rate buffer also does not overflow. More
generally, the encoder may use the virtual buffer model 700
to manage the rate of creation of bits by the encoder such
that another virtual buffer model, which may be applied later
to the encoder’s bit stream, does not overflow or underflow.
The bit rate at which bits leave the virtual buffer model can
be changed at any time to any supported value. If the actual
rate at which bits leave the rate buffer equals or approxi-
mates the rate at which bits leave the virtual buffer model,
the encoder’s bit rate can be set to any supported bit rate with
effectively instantaneous response. Because the rate control
uses the virtual buffer model to manage the rate of creation
of bits, the rate control function does not need to monitor the
rate at which bits leave the rate buffer.

In one implementation, the encoder and decoder perform
identical rate control (RC) decisions, which control the
value of the quantizer, or Quant, without the encoder trans-
mitting any bits that specifically indicate quantization con-
trol. The rate control may depend on the activity, measured
by the sizes of the samples, of the previous Group, as well
as fullness of the virtual buffer model, and a measure of the
strength of an edge, if any, in the preceding samples. The
rate control may use several configurable thresholds. Units
605 are organized into Groups 710. Groups 710 are utilized
to organize the samples to facilitate the buffer model and rate
control. In another exemplary implementation, the decoder
does not perform the same rate control decisions as the
encoder, and the encoder transmits bits which indicate at
least a portion of the quantization control.

In one implementation, the encoder, including the rate
controller 208, ensures that the virtual buffer model 700
never exceeds a defined maximum fullness, while choosing
quantization levels to maximize overall subjective image
quality. For some images and bit rates, both may be achieved
relatively easily, while for others, the buffer fullness may
vary and approach or reach the size of the virtual buffer
model 700 at times and the quantization may vary and may
reach the maximum allowed value at times.

The virtual buffer model 700 may represent a FIFO of
predetermined size, BufferSize. The value of BufferSize
may be chosen according to the particular application. A
larger size generally facilitates better compression for a
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given bit rate and image contents, and vice versa. A larger
size also implies a larger amount of space available in a
physical rate buffer, as well as potentially increased latency.
In an exemplary implementation, at the start of a picture, the
buffer model 700 is initialized to be empty. Alternatively, the
virtual buffer model 700 fullness may be retained from one
picture to the next, or it may be initialized to some other
value.

As each Group 710 of samples is encoded, the number of
bits used to code the Group is added to the accumulator in
the virtual buffer model 700. After each Group is coded, a
number equal to the budget of bits per Group, e.g., the
specified bit rate, is subtracted from the accumulator, with
the result clamped to 0 to enforce non-negative fullness. In
implementations where the decoder mimics the rate control
of the encoder, the same operation happens in the decoder:
as each Group is decoded, the number of bits that the Group
occupies is added to the model and the specified bit rate, e.g.,
the budget number of bits per Group, is subtracted, with the
result clamped to 0. This way the encoder and decoder buffer
models track exactly for every Group in each picture. The
rate controller 208 can guarantee that the buffer fullness
never exceeds the defined maximum value, e.g., the buffer
size, by adjusting the value of Quant.

In one implementation, at the start of each picture, the
quantization value Quant is initialized to 0, corresponding to
lossless coding. In another implementation, the value of
Quant is initialized to a non-zero value. The value of Quant
may be adjusted dynamically to avoid overflowing the buffer
model while maximizing the compressed image quality. The
rate control algorithm may facilitate encoding of difficult
images at low bit rates with minimum visible quantization
errors, as well as encoding difficult images at higher bit rates
with no visible quantization error.

In one implementation, the activity level of each Group is
measured. The activity level may be the maximum quantized
residual size of each Unit in the Group, times the number of
samples in a Unit (e.g., either 2, 3, or 4), plus 1 (corre-
sponding to a prefix value of 0), summed over all of the
Units in the Group. The quantized residual sizes are after
quantization using the current value of Quant. As an
example of 2 samples per unit and 3 units per group, the
numbers of bits for sample 0 and 1 are SampleSize[0] and
SampleSize[1] respectively. Assume the maximum of the
two samples for unit 0 is MaxSizeUnit[0]=MAX(Sample-
Size[ 0], SampleSize[ 1]), then the activity level for the group
is  ReSizeGroup=MaxSizeUnit[0]+1+MaxSizeUnit[1]+1+
MaxSizeUnit[2]+1. Another parameter that calculates the
real number of bits coded in the last Group, e.g., BitsCod-
edCur, in example shown below, is also used in determining
whether the value of Quant should be increased, decreased,
or left unchanged.

The following describes control of the quantization
parameter, Quant, for an example where the virtual buffer
size is 16 Kbits. In this example, “MaxBitsPerGroup” rep-
resents the pre-determined data rate in bits per group.
Offset| | is a set of values that adjust the “target_activi-
ty_level” according to the fullness of the buffer model,
which is represented by “Buffer_fullness”, and which is
compared to various threshold values represented by
BufThl, BufTh2, and so on:

// Set target number of bits per Group according to buffer fullness
if(Buffer_fullness < BufThl)

{
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-continued

16

-continued

Target_activity_ level = MaxBitsPerGroup + offset[0];
MIN_QP = minQP[0];
MAX_ QP = maxQP[0];

¥
else if(Buffer_ fullness < BufTh2)
{

Target_activity_ level = MaxBitsPerGroup + offset[1];
MIN_QP = minQP[1];
MAX_ QP = maxQP[1];

¥
else if(Buffer_ fullness < BufTh3)
{

Target_ activity_ level = max(0, (MaxBitsPerGroup + offset[2]));
MIN_QP = minQP[2];
MAX_ QP = maxQP[2];

¥
else if(Buffer_ fullness < BufTh4)
{

));

Target_activity_ level = max(0, (MaxBitsPerGroup + offset[3]

MIN_QP = minQP[3];
MAX_ QP = maxQP[3];

¥
else if(Buffer_ fullness < BufTh5)

Target_activity_ level = max(0, (MaxBitsPerGroup + offset[4]
%

MIN__QP = minQP[4];

MAX_ QP = maxQP[4];

¥
else if(Buffer_ fullness < BufTh6)
{

Target_ activity_ level = max(0, (MaxBitsPerGroup + offset[5]));
MIN_QP = minQP[5];
MAX_ QP = maxQP[5];

else if(Buffer_ fullness < BufTh7)

Target_ activity_ level = max(0, (MaxBitsPerGroup + offset[6]));
MIN_QP = minQP[6];
MAX__ QP = maxQP[6];

¥
else if(Buffer_ fullness < BufTh8)
{

Target_activity_ level = max(0, (MaxBitsPerGroup + offset[7]));
MIN_QP = minQP[7];
MAX_ QP = maxQP[7];

else if(Buffer_ fullness < BufTh9)

Target_ activity_ level = max(0, (MaxBitsPerGroup + offset[8]));
MIN_QP = minQP[8];
MAX_ QP = maxQP[8];

¥
else if(Buffer_ fullness < BufTh10)
{

Target_ activity_ level = max(0, (MaxBitsPerGroup + offset[9]));
MIN_QP = minQP[9];
MAX_ QP = maxQP[9];

else if(Buffer_ fullness < BufTh11)

{

Target_activity_ level = max(0, (MaxBitsPerGroup +
offset[10]));

MIN__QP = minQP[10];

MAX__ QP = maxQP[10];

else if(Buffer_ fullness < BufTh12)

{

Target_activity_ level = max(0, (MaxBitsPerGroup +
offset[11]));

MIN_QP = minQP[11];

MAX__ QP = maxQP[12];

¥
else if(Buffer_ fullness < BufTh13)
{
Target_activity_ level = max(0, (MaxBitsPerGroup +

offset[12]));
MIN_QP = minQP[12];
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MAX_ QP = maxQP[12];
else if(Buffer_ fullness < BufTh14)

{

Target_activity_ level = max(0, (MaxBitsPerGroup +
offset[13]));

MIN__QP = minQP[13];

MAX__ QP = maxQP[13];

else

{

Target_activity_ level = max(0, (MaxBitsPerGroup +
offset[14]));

MIN_QP = minQP[14];

MAX_ QP = maxQP[14];

The 14 values of threshold (BufTh1 through 14) of buffer
fullness in units of bits may be set for a virtual buffer model
size of 16 Kbits (16,384 bits) as {1792, 3584, 5376, 7168,
8960, 10752, 12544, 13440, 14336, 15232, 15456, 15680,
15960, 16240}. The 15 values of offsets (offset[0 to 14]) for
Target_activity_level may be set as {20, 10, 0, -2, -4, -4,
-8, -10, -10, =10, -10, -12, -12, -12, -12}.

At any range of buffer fullness, which is bounded by two
consecutive thresholds, e.g.
BufThl<=Buffer_fullness<BufTh2, there is a range of
Quant, specified by MIN_QP and MAX_QP, allowed for the
rate controller 208 to use. This helps to regulate the variation
of Quant to avoid over-quantization when the buffer level is
low, as well as avoiding the use of too many less significant
bits that may not help with visual quality when the buffer
fullness is high. The pair of parameters, MIN_QP and
MAX_QP, associated with each range of buffer fullness
levels are selected respectively from an array of 15 values of
minQP[0 to 14], with example default values of {0, 0, 1, 2,
2,3,4,8,8,8,13, 14, 15, 16, 17}, and an array of 15 values
of maxQP[0 to 14] with example default values of {2, 2, 2,
3,3,7,9,10, 11, 12, 13, 14, 15, 16, 17}, according to the
buffer fullness level.

The value of Quant is adjusted according to the measured
activity levels, the target activity level, the allowed Quant
range specified by MIN_QP and MAX_QP, and the strength
of a strong edge. When there is a strong edge, the activity
level normally increases significantly if the value of Quant
stays fixed. The rate control algorithm detects the presence
of a strong edge by examining the activity level of the
current Group and that of the preceding Group as well as the
associated values of Quant. When a strong edge is detected,
the rate control algorithm does not increase the value of
Quant immediately after the presence of the strong edge, in
order to avoid potential quantization noise that is more
readily visible in smooth areas that may follow a strong
edge. This factor may be observed for example in some
cartoon content. The rate control may increase the value of
Quant at the second group after a strong edge. One param-
eter that serves as a threshold in detecting strong edges is
defined as EdgeFactor in the pseudo code below.

Some implementations avoid excessive fluctuation of
Quant around a high quantization value, which could result
in visible high frequency quantization noise in some images.
These implementations regulate the increase of Quant so
that Quant does not increase for two consecutive Groups of
pixels when the value of Quant is already high, with certain
exceptions. However, the decrease of Quant may be allowed
as soon as the measured activity level is low. These adjust-
ments are controlled by two parameters defined as Quantln-
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crLimit[0] and QuantlncrLimit[1] in the example below;
their default values may be set to 11. In the following
example, RcSizeGroup represents the activity level,
BitsCodedCur represents the actual number of bits used to
code the most recently coded Group, and RcTgtBitsGroup
represents the Target_activity_level. ReTgtBitOffset[0] and
ReTgtBitOffset[ 1] are offset values that adjust the range of
the target activity level. EdgeFactor is a parameter that is
used to detect a strong edge. The quantization step of the last
Group is Quant, which is saved as QuantPrev before it is
assigned the value for the current Group.

The operation of the Quant adjustment may be imple-
mented as follows:

if ( ReSizeGroup < (ReTgtBitsGroup — ReTgtBitOffset[0])
&& BitsCodedCur < (ReTgtBitsGroup — ReTgtBitOffset[0]))
{ QuantPrev = Quant;
Quant = MAX(MIN__QP, (Quant-1));

else if (BitsCodedCur > RcTgtBitsGroup + ReTgtBitOffset[1])
{ if ((QuantPrev == Quant && ReSizeGroup * 2 <
ReSizeGroupPrev * EdgeFactor) |l (QuantPrev < Quant &&
ReSizeGroup < ReSizeGroupPrev * EdgeFactor &&
Quant < QuantIncrLimit[0])
Il (Quant < QuantIncrLimit[1] ) )
{ QuantPrev = Quant;

Quant = MIN(MAX__QP, (Quant+1));} }

else QuantPrev = Quant;

When the buffer fullness approaches the maximum
allowed level, the above Quant value determined by the
activity level may be replaced by max_QP:

if (Buffer_ fullness >= BufTh_ overflow__avoid)
*Quant = max_ QP;

Where BufTh_overflow_avoid is a programmable param-
eter.

FIG. 8 shows an example decoder 800. The decoder 800
includes a rate buffer 802, a variable length decoder (VLD)
804, a predictor, mapper and inverse quantizer (PMIQ) 806,
and a rate controller 808. The decoder 800 may be located
in the same device or in a different device as the encoder, and
may receive the bitstream input from any source, such as a
memory or communication interface. For example, the
decoder 800 may be located remotely from the encoder and
receive the input bitstream via a network interface.

The rate buffer 802 may be a FIFO memory which
temporarily stores compressed data bits after the encoder
800 receives them. The rate buffer 802 may be integrated
with the rest of the video decoder or it may be located in
another module, and it may be combined with another
memory. The size of the rate buffer 802 may be at least as
large as the virtual buffer used in the video encoder. For
example, where the video encoder uses a 16 kbits virtual
buffer, e.g., 2048 bytes, the rate buffer may be the same size,
i.e., 2048 bytes or larger. Ready-accept flow control may be
used between the rate buffer 802 and the VLD 804 to control
that when the rate buffer 802 is empty the decoding opera-
tion is suspended until there is data available in the rate
buffer 802.

The fullness of the rate buffer 802, at any given time, may
not be the same as the fullness of the virtual buffer model.
In part this is because the decoder virtual buffer model
mimics the operation of the encoder virtual buffer model,
and not the operation of the decoder, and the buffer model
operates with the specified number of coded bits/pixel times
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the number of pixels in a Group being removed from the
buffer model every time a Group is decoded, rather than the
actual schedule at which bits arrive at the decoder. The
transmission of compressed bits may be modeled as being
exactly synchronized with the decompression function,
while in actual operation the input of the rate buffer 802 may
be read from memory more quickly or more slowly than
exactly this rate. This is one reason that the rate control,
above, operates on the buffer model and not on the rate
buffer fullness.

The input to the VLD 804 is a compressed bit stream 812.
The compressed bit stream 812 nay include a series of
Groups. The Groups may include a set of Units. Each Unit
may have a Prefix and some number of samples, for example
two, three or four samples. The VLD 804 operation is the
inverse of the variable length coder (VLC) 206 function.
Since the input to the VLD 804 is a stream of bits, e.g., a
stream of VLC coded samples, part or all of the VLD
operation may be performed sequentially. Some of the VLD
functionality may be pipelined, however.

In one implementation, the VLD 804 uses a Unit size of
2, i.e., 2 samples per Unit. The choice of Unit size may be
the same for both the encoder and decoder for any given
image. The Unit size is generally an attribute of the encoded
bit stream.

The VLD 804 decoding operation entails determining the
actual sizes (e.g., number of significant bits) of the samples
in the previous Unit of the same component as the one
currently being coded, and creating a predicted Unit sample
size from this information. This analysis may be pipelined.
The VLD 804 may decode the Prefix of each unit, which
may be unary coded. The decoded Prefix value is added to
the predicted sample size value. The resulting sample size
information indicates how many bits for each sample are
contained in the Unit. The VLD 804 extracts from the
incoming bit stream a number of bits equal to the prefix size
plus the determined sample size times the number of
samples per Unit. Once the VLD 804 extracts these bits, they
are de-multiplexed and processed by subsequent decoding
steps which may be pipelined.

Similar to the VLC, the number of bits spent for the
current Group as well as the activity level of the current
Group are calculated and passed to the rate controller 808 for
rate control. The VLD 804 generates the values of RcSize-
Group and BitsCodedCur and passes these to the rate
controller 808.

Once the coded samples are extracted, they are converted
to a suitable format for subsequent processing. For example,
they may be converted to an 11 bit 2°s complement signed
format, with sign-extension of negative sample values.
These constant-width sample values are demultiplexed into
individual component streams of samples, and sent to the
Predictor, Mapping and I-Quant (PMIQ) block 806.

FIG. 9 shows example logic 900 for encoding. The logic
900 initializes the quantization step to zero (902) and
receives a unit of pixel components (904). The logic 900 also
performs quantization using the quantization step and
encodes the quantized values (906). The logic 900 measures
the fullness of the virtual buffer (908) and adjusts the
quantization step based on the measured fullness (910). If
the encoding is finished (912), flow may return to (902) or
terminate altogether; otherwise flow may continue at (904).

FIG. 10 shows example logic 1000 for decoding. The
logic 1000 initializes the quantization step to zero (1002).
The logic 1000 decodes a coded unit and updates the virtual
buffer (1004). The logic 1000 also dequantizes using the
quantization step parameter (1006), and measures the full-
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ness of the virtual buffer (1008). Further, the logic 1000 may
adjust the quantization step based on the measured fullness
(1010). The logic 1000 determines whether decoding of the
frame is finished (1012), and if so, flow may return to (1002)
or terminate. Otherwise, the flow may return to (1004).

Operation Description

The description above provides an example architecture
that supports additional specific image processing opera-
tions. An introduction to some of these operations is pro-
vided next. Additional architectural implementations that
support the image processing operations are also discussed
further below.

FIG. 11 shows an example encoding and decoding system
1100, based on the example of FIG. 1. The system 1100
supports real time operation. Source data 112, which may be
uncompressed, enters the encoder 104, for example in real
time and raster scan order. The encoder 104 compresses
incoming pixels to form a bitstream and temporarily stores
portions of the bitstream in its rate buffer 210. The output of
the rate buffer 210 is the slice layer of a Display Stream
Compression (DSC) bitstream 1106. The DSC bitstream
1106 may be conveyed, e.g., in real time from the encoder
104 to the decoder 106. In that regard, a wide variety of
communication links 1104 may convey the DSC bitstream
1106 to the decoder 106. Underlying the communication
links 1104 may be a wide variety of transport layers, and the
communication links 1104 may include local high speed
busses, WiFi links, Ethernet links, satellite links, cellular
(e.g., 3G or 4G/LTE) links, as examples.

The decoder 106 receives the DSC bitstream 1106 into its
rate buffer 802, which temporarily stores portions of the
DSC bitstream 1106. The decoder 802 decodes bits from the
rate buffer 802 to obtain uncompressed pixels. The decoder
802 outputs the uncompressed pixels, e.g., in real time and
in raster scan order, for the display 110. The image output
from the decoding process may have the same format as the
image input to the encoding process.

The DSC bitstream may include of a sequence of frames
coded using a picture layer syntax. The picture layer syntax
may include a PPS (picture parameter set) and a slice syntax.
The PPS contains parameters that the decoder 106 uses for
correct decoding of the slice layer. FIG. 12 shows an
example of a PPS 1200.

The picture layer may operate in units of entire pictures.
A picture may be, as examples, a frame in the case of a
progressive format video, or a field in the case of an
interlaced format video. Each picture may include an integer
number of contiguous, non-overlapping, identically-sized,
rectangular slices. In the encoder 104, slice coding is speci-
fied via a slice layer. In the decoder 106, each slice may be
decoded independently without reference to other slices.
There may be one slice per line or multiple slices per line.
In the case of multiple slices per line, bits from the slices
covering one line are multiplexed in the DSC bitstream 1106
via a slice multiplexing process described below. Each slice
may include a set of groups, and each group may be a set of
three consecutive pixels in raster scan order. Further, the
encoder 104 may encode each group with multiple (e.g.,
three) entropy codes, one for each component, and each of
which may be a specific type of variable length code (VLC).
Furthermore, some groups may include one or more addi-
tional bits which signal specific decoding operations.

FIG. 13 shows another example of an encoder 1300. The
DSC encoding process generates bitstreams that may pre-
cisely conform to the independently specified bpp (bits per
pixel) rate. The bpp rate may be specified in terms of bits per
pixel time, which may be algorithmically specified, as the
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unit of a pixel time is the same at both the input and output
of'the encoder 1300. The number of bits that code each pixel,
or group of pixels, may vary considerably. In the encoder
1300, the rate buffer 1302 facilitates converting the variable
number of bits used to code each group into, e.g., a constant
bpp rate. To that end, the encoding process includes the rate
controller 1304.

The encoder 1300 may include color space conversion
logic 1306, e.g., RGB input to reversible YCoCg conversion
logic. An input buffer 1308 stores the converted input.
Prediction, quantization, and reconstruction (PQR) logic
1310 implements prediction of sample values and generation
of residual values. The prediction, quantization, and recon-
struction (PQR) logic 1310 may include multiple (e.g.,
three) predictors: modified median adaptive prediction
(MMAP), mid-point prediction (MPP), and block prediction
(BP). The PQR logic 1310 also implements quantization of
residual values and reconstruction of sample values. An
indexed color history (ICH) 1312 is also present, as is VL.C
coding logic 1314 that may implement entropy coding using
delta size unit variable-length coding (DSU-VLC). The
input buffer 1308 provide samples to the flatness determi-
nation logic 1318. Note also that substream multiplexing
logic 1320 is present to prepare a multiplexed output stream
to the rate buffer 1302.

FIG. 14 shows another example of a decoder 1400 con-
figured to decode image data that the encoder 1300 has
encoded, and produce image output 1418. The decoder 1400
may implement the inverse of the operations that were
performed by the encoder 1300. The decoder 1400 may
include a rate buffer 1402, substream demultiplexer 1420,
and VLC entropy decoding logic 1404 for delta sized unit
variable length coding (DSU-VLC). The decoder 1400 also
includes PQR logic 1406 that may implement multiple (e.g.,
three) predictors: modified median adaptive prediction
(MMAP), mid-point prediction (MPP), and block prediction
(BP). The PQR logic 1406 also performs inverse quantiza-
tion of residual values and reconstruction of sample values.
An ICH 1408, rate control logic 1410, and color space
conversion logic 1412 is also present. Flatness indications
may be signaled in the bitstream from the encoder, and
provided to the rate control logic 1410.

The encoding process may produce display stream coded
bitstreams that conform to an HRD (hypothetical reference
decoder) constraint. The HRD may be idealized model of a
decoder that includes a model of a rate buffer, which should
neither overflow nor underflow.

The DSC bitstream and decoding process facilitate decod-
ing 3 pixels per clock cycle in practical hardware imple-
mentations. In other implementations, the decoding process
may process 1, 3, or other numbers of pixels per clock.
Additional throughput in terms of pixels per clock may be
increased via encoding and decoding multiple slices in
parallel, which is facilitated by utilizing multiple slices per
line in the DSC bitstream.

Color Space Conversion Logic 1306, 1412

RGB video input to the encoding process may be con-
verted to YCoCg for subsequent processing. The reversible
form of YCoCg may be used, and as such the number of bits
per each of the two chroma components is one greater in
YCoCg than it is in RGB. In the case of YCbCr input, no
color space conversion need be performed. The inverse color
space conversion is performed in the decoding process.

PQR Logic 1319, 1406

Each group of pixels is coded using either predictive
coding (P-mode) or indexed color history coding (ICH-
mode). For P-mode there are three predictors: modified
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median-adaptive prediction (MMAP), block prediction
(BP), and midpoint prediction (MPP). The encoder and
decoder may select MMAP, BP, or MPP automatically, using
the same algorithm in each, without signaling the selection
in the DSC bitstream.

In the encoder 1300, each sample is predicted using the
selected predictor. The original sample value is compared to
the predicted value, and the difference is quantized. Each
quantized error is then entropy-coded if P-mode is selected.
The encoder 1300 also performs a reconstruction step
wherein the inverse-quantized error is added to the predic-
tion so that the encoder and decoder may use the same
reference samples.

In decoder 1400, the samples are predicted using a
selected predictor. The residual value, which is obtained
from decoding the DSC bitstream, is inverse quantized and
the result added to the prediction, forming the reconstructed
sample value.

The median-adaptive predictor (MAP) may be the pre-
diction method that is used in JPEG-LS. However, a modi-
fication is made to allow the decoder 1400 to process three
pixels in a group in parallel and to improve coding. The
modified median-adaptive predictor (MMAP) {facilitates
hardware implementations for decoders running at 3 pixels/
clock. The MMAP predicts a current sample value as a
function of reconstructed previously coded samples to the
left and above the current sample. The encoder 1300 and
decoder 1400 may use identical sets of reconstructed
samples for this purpose, and hence the MMAP produces the
same results in both the encoder 1300 and the decoder 1400.
MMAP may be the default predictor, and is effective at
predicting sample values in most conditions.

The MPP predicts a current sample from a value that is
approximately at the mid-point of the valid range for the
sample. The MPP has the benefit of bounding the maximum
size of the residual. MPP may be selected in place of MMAP
when the number of bits required to code the samples in of
one component of a group would be greater than or equal to
the bit depth for that component minus the quantization
shift.

The BP predicts a current sample from a reconstructed
previously coded sample to the left of the current sample in
the same scan line. The offset from the current sample to the
predictor position is a BP vector. The BP vector and the
decision of whether or not to use BP are determined auto-
matically by the BP function, which is the same in both the
encoder and decoder.

Block Prediction

Block prediction may predict the current sample where
the predictor is a sample to the left of the current sample, in
the same line. The relative position of the reference sample
may be between (-3) and (~10), inclusive. Using additional
pixel locations may improve quality. The relative position is
a vector within the same line of samples; this is referred to
as the block prediction vector.

The search to find the best vector may be performed on
the previous line of samples, rather than the line that is
currently being coded. In one implementation, the block
search compares a set of 9 consecutive samples with refer-
ence samples using various potential vectors with values
ranging from -3 to -10. The current samples and the
reference samples being compared are in the same scan line,
e.g., the line above the line of the sample to be coded. For
each vector considered, a SAD (sum of absolute differences)
is calculated over 9 samples in each of the current and
reference set. The vector with the lowest SAD value is
selected. In cases of ties, the vector closest to 0 is selected.
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The 9-pixel SAD of the vector —1 is also used in order to
determine whether BP or MMAP should be used. More
details of predictor selection are given below.

A vector, once selected, applies to each group of 3
samples. Therefore the block search is performed every 3
samples.

A vector means that the predictor for pixel X is the pixel
that is to the left of pixel X in same line, the distance to the
left in pixel units being equal to the vector value.

FIG. 15 illustrates example sample sets 1500 for block
search, showing several reference samples 1502 and vectors
1504, 1506. An example of the current sample ‘x’ 1506 and
the current SAD calculation samples 1508 are also shown.

Indexed Color History (ICH) Logic 1312, 1408

FIG. 16 illustrates an example of indexed color history
1600.

In many types of content, such as computer-generated text
and graphics, similar pixel values tend to appear in reason-
ably close proximity while not necessarily being adjacent to
one another. Because of this, it can be helpful to keep track
of a number of recently-used pixel values in the Indexed
Color History (ICH). When the encoder 1300 selects ICH-
mode for a particular group, it sends index values corre-
sponding to the selected pixel values within the ICH. These
index values are used directly in the output pixel stream.

The ICH logic includes a storage unit that maintains a set
of recently used color values that were coded using another
coding method such as predictive coding. The encoder 1300
and decoder 1400 may maintain identical states of the ICH.
The ICH may have 32 entries, with an index value pointing
to each entry. For groups that are ICH coded, each pixel may
be coded with a 5-bit ICH index, which points to one of the
entries. As each group of pixels is encoded in the encoder or
decoded in the decoder in P-mode, the values of all the
pixels in the group are entered into the ICH. The ICH may
be managed as a shift register where the most-recently used
(MRU) values are at the top and the least-recently used
(LRU) values are at the bottom. New entries are added at the
top and all other entries are shifted down, with the bottom
entries falling out of the ICH. When a group is coded in
ICH-mode, the three indices used to code those pixels
reference entries in the ICH. When an ICH entry is refer-
enced, it is moved to the top of the ICH and the other values
above the prior location of the entry are shifted down by 1.
This operation is performed in parallel for all 3 entries of
each ICH coded group, and the most recent, e.g., the
rightmost pixel value of the group becomes the MRU. The
result is that the most recently used (MRU) value is at the top
of the history and the least recently used (LRU) value is at
the bottom of the history. Whenever a P-mode group of three
pixels is added at top of the history, the three LRU values are
removed.

For the first line each slice, all 32 ICH entries are treated
as part of the shift register. For lines after the first line of a
slice, the last 7 index values are defined to point to recon-
structed pixels in the line above the current line, rather than
entries in the ICH. This is useful for efficient coding of pixel
values that are not in the history shift register, and it
improves coding with some content.

ICH mode may be selected on a per-group basis by the
encoder 1300. The encoder 1300 signals the use of ICH
mode for a group using an escape code in the luma sub-
stream DSU-VLC. For each group coded in ICH mode, each
pixel in the group is coded using a fixed-length 5 bit code,
where the index values point into the history. The decoder
1400 decodes each ICH-coded group by determining the use
of ICH mode via the bitstream syntax and decoding each
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pixel in the group by reading the values pointed to by the
ICH indices that constitute the coded values of the pixels.
Both the encoder 1300 and decoder 1400 update the ICH
state identically every group by inserting P-mode pixels into
the ICH and by re-ordering the ICH entries in response to
ICH mode groups.

Entropy Coding Logic 1314, 1404

The display stream coding defines syntax at multiple
layers. The lowest layer is called the substream layer. There
may be three substreams in each slice, one for each com-
ponent. The three substreams may be multiplexed together
by a substream multiplexing (SSM) process to form a coded
slice. If there is more than one slice per line, the coded slices
may be multiplexed by the slice multiplex process; and if
there is only one slice per line, the slice multiplex process is
not used. The resulting bits of all slices are concatenated to
form a coded picture. Each coded picture is optionally
preceded by a picture parameter set (PPS).

Substream Layer

The display stream encoding may use an entropy coding
technique referred to above as DSU-VLC for coding residu-
als associated with predictive coding. ICH coding of pixels
uses a fixed-length code for each pixel. Specialized values
are used to signal the use of ICH mode, and other codes
signal quantization adjustments associated with flat regions
of pixels.

TABLE 1

Examples of sizes for different residual values

Residual values Size in bits Representation

-3
-2
-1

0

101b
10b
1b
<none>
01b
010b
011b

W WO~ N W

1
2
3

The pixels in each slice may be organized into groups of
three consecutive pixels each. A group is a logical construc-
tion employed by the encoding and decoding processes, but
need not be directly represented in the bitstream. DSU-VLC
organizes samples into units. A unit is the coded set of
residuals of three consecutive samples of one component.
Each unit has two parts: a prefix and a residual. The size of
each residual is predicted based on the size of the three
previous residuals of the same component type and any
change in QP that may have occurred. The prefix may be a
unary code that indicates the non-negative difference
between the size of the largest residual in the unit and the
predicted size. If the difference is negative, the value coded
by the prefix is zero. The residual portion of each unit
contains 3 values, one for each sample in the unit. The
residual values are coded in 2’s complement. The number of
bits allocated to residuals can vary from unit to unit;
however, all 3 residuals in one unit may be allocated the
same number of bits.

In addition, the prefix for luma units also indicates
whether or not ICH mode is used for each group. A transition
from P-mode to ICH-mode may be indicated by an escape
code, e.g., a prefix value that indicates a size that is one
greater than the maximum possible residual size for luma.
The maximum possible residual size for luma depends on
the QP value that applies to luma in the group. An ICH-mode
group immediately following another ICH mode group may
be indicated by a luma prefix code consisting of a single “1”
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bit. A P-mode group immediately following an ICH-mode
group may be indicated by a modified unary code.

For an ICH-mode group, the residual portion may be 5
bits for each component, where each 5 bit code is an ICH
index which codes a complete pixel, and the chroma com-
ponents do not utilize a prefix. For subsequent ICH-mode
groups following an initial ICH-mode group, each group
may use 16 bits for every group, e.g., a 1 bit prefix and (3)
5 bit ICH codes.

The luma substream may also contain some conditional
fixed-length codes in the syntax for the purpose of the
encoder conveying information about a transition from a
busy area to a smooth area. This “flatness indication™ is
discussed in more detail below.

Substream Multiplexing

The three component-wise substreams may be multi-
plexed together using a fixed-length substream multiplexing
scheme with no headers. One technique for doing so is
described in the U.S. Patent Publication Number 2011-
0305282 Al, which is incorporated by reference. FIG. 17
shows an example of the results of substream multiplexing
1700, including various multiplexed words and components
1702. Each mux word may have an identical size, e.g., 48
bits for 8 or 10 bits per component (bpc), or 64 bits for 12
bpc. The order of the mux words 1702 is derived from the
order in which parallel substream decoders use the data in
order to decode in real time.

FIG. 18 shows an example of substream demultiplexing
logic 1800. The logic 1800 includes a memory such as a rate
buffer 1802, a demultiplexer 1804, and funnel shifters with
VLD 1806, 1808, and 1810. The combination of the funnel
shifter and VLD is referred to as a substream processor
(SSP). At each group time, any combination of the SSP’s
may request a mux word or none at all. If a request is
received from an SSP, the demultiplexer 1804 sends a mux
word to that SSP. If multiple requests are received in the
same group time, the demultiplexer 1804 sends a mux word
to each SSP that made a request.

At the end of the slice, the SSP’s may request mux words
beyond the end of the substream layer data. Therefore, the
encoder 1300 may insert padding mux words as needed at
the end of the slice.

FIG. 19 shows an example of the substream multiplexing
logic 1900, including VL.C and funnel shifters 1902, 1904,
1906, balance memories (e.g., FIFOs) 1908, 1910, 1912, a
multiplexer 1914, rate buffer 1916, and demultiplexer model
1918. The demultiplexer model 1918 helps the encoder 1300
to order the mux words correctly. The balance FIFO’s 1908,
1910, 1912 may store many groups worth of data in order to
provide the mux words at the appropriate time.

Rate Control

The encoder 1300 and decoder 1400 may use identical
rate control (RC) algorithms, configured identically. The
decisions made by the RC algorithm to adjust QP in the
encoder are mimicked in the decoder 1400, such that the
decoder 1400 has the same QP value as the encoder 1300 at
every pixel, without any bits being spent communicating the
QP value, except for the flatness indication. RC decisions are
made in the encoder 1300 and decoder 1400 based on
information previously transmitted and received. RC can
change the QP value every group.

Rate Control Goals

The RC provides the encoder 1300 and decoder 1400 with
quantization parameters (QP) to use for each group. Since
the RC function is the same on both the encoder side and the
decoder side, the base QP value is known to both encoder
1300 and decoder 1400, and it does not need to be trans-
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mitted in the bitstream. However, the base QP value or
adjustments to the QP value may be sent in the bitstream for
flatness indication, described below.

The RC attempts to ensure hypothetical reference decoder
(HRD) conformance. There is a model of an idealized rate
buffer (FIFO) that converts a varying number of bits to code
each group into a specified constant bit rate. The RC is
designed to ensure that this FIFO will not overflow or
underflow assuming that bits are removed at an assumed
constant bit rate.

The RC optimizes picture quality in its QP decisions. It is
desirable to use a lower QP on relatively flat areas and a
higher QP on busy areas due to perceptual masking. In
addition, it is desirable to maintain a constant quality for all
pixels; for example, the first line of a slice has limited
prediction, and may therefore use an additional bit alloca-
tion.

HRD Buffer Model

A hypothetical reference decoder (HRD) model describes
the behavior of an idealized rate buffer in a decoding system.
An encoder rate buffer model may be mirrored on the
decoder side. The encoder model tries to ensure that there
are no overflows or underflows. Since the DSC may be
constant bit rate (CBR), the HRD model fullness is equal to
buffer size—encoder buffer fullness; therefore, the decoder
buffer model does not overflow or underflow. The DSC
encoder rate buffer model may define a schedule for bits
entering and leaving the rate buffer.

During the initial delay, e.g., initial transmission delay, the
encoder generates bits into its rate buffer every group, but no
bits are removed. During this period, the encoder model
fullness increases according to the number of bits that are
generated. The delay period may be specified in terms of
group times or pixel times, as examples.

As long as there are more pixels in the slice to be encoded,
the encoder generates bits according to the content. Bits are
removed at the constant rate that is specified. To prevent the
buffer fullness from dropping below 0, the prediction mode
may be overridden to use MPP, which enforces a minimum
data rate. Once the last group of a slice has been encoded,
no more bits are added to the rate buffer. Bits continue to
leave the rate buffer at the constant rate until the buffer
becomes empty, after which the encoder sends zero bits to
ensure that the compressed slice size in bits is equal to
bpp*number of pixels in slice, in CBR operation.

The decoder initial delay is specified as the complement
of the encoder initial delay; e.g., the HRD delay minus
encoder initial delay. The decoder rate buffer fullness then
tracks as the complement of the encoder buffer fullness.

CBR vs. VBR

Under conditions when the encoder rate buffer would
otherwise underflow, there is a design choice of whether the
encoder inserts bits to prevent underflow, or it uses VBR. To
prevent underflow, the RC determines whether underflow is
possible after the next coded group, and when this condition
occurs it forces MPP mode which enforces a minimum bit
rate. The decoder does not require any special logic to
handle stuffing, as it decodes the extra bits just as it would
any other group.

It is possible to support variable bit rate (VBR). With
VBR, the encoder 1300 stops sending bits under certain
conditions when it would otherwise underflow and has no
bits to send (Off). The encoder 1300 then starts sending bits
again at some identified event (On). To make on-off VBR
compatible with a general HRD that does not depend on the
real time behavior of the transport, the off and on events may
be specified.
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With VBR, the encoder stops sending bits when it would
otherwise underflow and has no bits to send. The encoder’s
RC process operates once per group. At each group, it adds
to the buffer model the number of bits that code the group,
and normally it subtracts from the buffer model the nominal
number of bits per group, which is 3*bpp, adjusted as
necessary to form an integer number of bits. With VBR, if
this subtraction of bits/group from the buffer model fullness
would result in a negative value of fullness, the RC subtracts
the normal number of bits and then clamps the buffer
fullness to zero, i.e. the model fullness is never allowed to
be negative. In a real system with a real transport and real
decoder, when the encoder has no bits to send, i.e. its real
rate buffer is empty, the transport does not send any bits and
the decoder does not receive any bits. The decoder’s real rate
buffer may be full, but it does not overflow. When the
encoder does have bits to send, transport is expected to
transmit them at the normal rate and the decoder receives
them at that rate. The decoder’s real buffer does not overflow
nor underflow, and the decoder does not have to do anything
special to handle VBR. The transport should understand
when there is and is not valid data available to send and
receive.

Slices

The number of bits that code a picture may be equal to the
number of pixels of that picture times the specified bpp rate.
Further, any subset of slices of a picture may be updated in
place in a compressed frame buffer by over-writing the
previous version of each of the corresponding slices. One
consequence is that a complete picture can be transmitted as
a series of consecutive slices comprising the entire picture,
and that an entire picture transmitted as a series of consecu-
tive slices meets the same requirement as for slices, e.g., the
number of bits equals the number of pixels times the bpp
rate, and also the entire picture comprising slices should
conform to an appropriate HRD model to ensure correct real
time buffer behavior with this mode of operation. One
consequence is that the delay from the start of transmission
to the start of decoding and the delay from the end of
transmission to the end of decoding are the same as one
another and the same for each slice.

The algorithm uses a rate buffer model, which may be
referred to as a rate buffer. The algorithm allows the encod-
er’s rate buffer to have up to a specified fullness, e.g., a
maximum number of bits, at the end of each slice. If at the
end of coding a slice the encoder’s buffer has fewer bits than
this maximum number, it may pad the remaining bits at the
end with Os, for example, to produce exactly the required
number of bits. This final number of bits occupies a specified
number of pixel times to transmit at the specified bpp rate.
This number of pixel times is the delay from the end of
encoding to the end of transmission, which may be called the
final transmission delay. The total rate buffer delay, in units
of pixel times, in the combination of an idealized encoder
and decoder is equal to the rate buffer size divided by the bpp
rate. The initial transmission delay, from the start of encod-
ing a slice until the start of transmission of that slice, is the
same as the final transmission delay. The initial decoding
delay, e.g., the delay in the HRD timing model from the start
of reception of a slice to the start of decoding of the slice is
set equal to the total end-end rate buffer delay minus the
initial transmission delay. This permits correct operation per
the description above.

FIG. 20 shows an example of slice timing and delays
2000. FIG. 20 shows slice input video timing 2002, slice
transmission timing 2004, and slice decoding timing 2006.
The algorithm may have a fixed parameter value for the
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maximum number of bits that can be in the encoder buffer
at the end of a slice, typically ~4 kbits. The resulting ending
transmission delay is a function of the bpp rate; it is set to
ceiling (4096/bpp_rate). At 8 bpp, this delay is 170 group
times, and at 12 bpp it is 114 group times. The initial delay
may be set to this value.

The end-end HRD delay is equal to the HRD buffer size
divided by the bpp rate. For example, if the HRD buffer size
is 19,836 bits and the rate is 12 bpp, the end-end HRD delay
is floor (19,836/36)=551 group times. This is actually an
upper bound, and the HRD delay could be set to a lower
value, however if a lower value were used then the algorithm
would not be able to take full advantage of the available
buffer size for purposes of RC.

The initial decoding delay, which applies directly to the
HRD and indirectly to real decoders, should be set to the
HRD delay—initial transmission delay. In the example here,
where the initial transmission delay is set to 114 group times
as above, the initial decoder delay is 551-114=437 group
times. This is a delay that applies to the HRD, ie. an
idealized hypothetical decoder. A real decoder is of course
free to have additional delay.

The algorithm’s rate buffer size, which is also the HRD
buffer size, can be selected by an encoder as long as it does
not exceed the capabilities of compatible decoders. The
optimum rate buffer size is a function of several factors
including the bpp rate and the width of slices.

Note that the initial transmission delay is typically a
function of bpp rate. The HRD rate buffer size may be set by
the encoder as long as it does not exceed the capabilities of
decoders. It is practical to design real systems with adjust-
able bit rate and constant end-end delay, from video into the
encoder to video out of the decoder, and with constant delay
from compressed data into the decoder to video put of the
decoder. An encoder may set the initial transmission delay
and the initial decoder delay to selected values to facilitate
seamless changes of bit rate with constant delay.

Options for Slices

The encoder 1300 and decoder 1400 support a wide
variety of slice widths and heights. One configuration is slice
width="4 picture width and slice height=32 lines. Another
possible configuration is slice width=picture width and slice
height=8 lines. The slice dimensions can be specified up to
the picture width by the picture height. To minimize extra
data that may need to be sent, equal-sized slices may be used
throughout the picture.

Taller slices may lead to better compression. Extra bits are
allocated to the first line of each slice to maximize quality
and to prevent artifacts at the boundaries between slices. The
number of extra bits allocated per group on the first line is
set via a parameter in the PPS. The numbers of bits available
to all lines after the first line each slice may be reduced in
order that the total number of bits per slice is the number of
pixels times the bpp rate. The more lines there are after the
first line in each slice, the less reduction in bit allocation is
required. Therefore a slice height of 32 lines typically gives
better performance than a slice height of 8. There is no cost
associated with slice height—there is no additional buffering
nor any other additional resources. The encoder 1300 and
decoder 1400 support a slice size equal to the entire picture
size.

Slices narrower than the full screen width may be desir-
able for various practical purposes. Narrower slices provide
the ability to update, via partial update, a narrower slice, or
to facilitate parallel processing at low cost. In practice,
multiple slices per line can use one line buffer the size of the
picture width. With multiple slices per line, and slices that
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are taller than one line, the rate buffers for the different slices
may be independent. For example, with four slices per line,
a practical implementation would use four rate buffers. The
sizes of each rate buffer can be specified to be smaller for the
case of 4 slices/line than they would normally be specified
for the case of one slice/line, as the optimum rate buffer size
is a function of the slice width, although not exactly pro-
portional. Hence there is a small increase in the total amount
of rate buffer space when there are multiple slices per line,
while there is no increase in the total amount of line buffer
space.

Slice Multiplexing

In systems configured to use more than one slice per scan
line, the compressed data may be multiplexed according to
a specific pattern in order to minimize cost in both encoders
and decoders. The recommended pattern is as follows. For
an integer number S of slices per line, each slice has P pixels
per line, and the picture is W pixels wide. Preferably P is
equal for all slices, equal to W/S, which is preferably an
integer. The multiplexed bit stream contains a number of
bits=P*bpp rate for the first slice of the first row of slices,
then P*bpp rate for the 2nd slice of the first row, and so on
for all slices of the first row.

One iteration of this pattern has W¥*bpp rate bits, which
may be the same number of bits as would have been used if
there were one slice per line. If P*bpp rate is not an integer,
an adjustment can be made to result in an integer number of
bits per slice. For example, the number of bits included for
one line of one slice may be the integer truncated value of
P*bpp plus the accumulated residual amount from previous
truncations. Then this pattern repeats as many times as
needed to transmit all the bits of all slices in the first row of
slices. An application specification, for example a transport
specification that is designed to carry DSC compressed
image data, may carry data from different slices in separate
packets. In that case, the last bits from one slice may be in
a separate packet from those of other slices, including the
first bits of the vertically adjacent slice immediately below
the first one. Alternatively an application specification may
choose to package the last bits of one slice with the first bits
of another slice, for example a horizontally adjacent neigh-
boring slice or a vertically adjacent neighboring slice. The
overall pattern may repeat for the entire image. It is not
necessary to include markers or other indications in the bit
stream indicating which bits are for which slice. Instead, the
transport layer may provide such indicators.

Additional information on slice multiplexing follows.

Slice multiplexing may occur when VBR is disabled, e.g.,
stuffing is enabled. When stuffing is disabled, the number of
bits coding each slice may vary, e.g., the DSC operation is
VBR. Pictures include some number of slices. Slices may be
identically-sized when possible, e.g., when the ratio of
picture width to slice width is an integer. In case this ratio
is not an integer, the widths of the columns of slices may be
set to integer values that differ by no more than 1, and whose
sum is the picture width. Slice multiplexing is possible also
when VBR is enabled as well. The memories used and
multiplexing pattern will depend on characteristics of the
link, including for example, the overhead required to enter
or leave a low-power state.

With VBR disabled (stuffing enabled) slices of the same
width are coded using the same number of compressed bits.
When the slice width is equal to the picture width, the slice
layer data is sent sequentially (slice O, slice 1, . . ., slice N-1,
where N is the number of slices). When the slice width is
shorter than the picture width, the slice data for all slices on
the same line may be multiplexed into fixed-length chunks.
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The length of each chunk may be equal to floor
(bits_per_pixel*slice_width). The floor( ) function is used
since bits_per_pixel may be fractional. For example, in a
case where the picture is split into two equal-sized slices on
each line, the multiplexed bitstream would contain:

Slice 0 chunk/Slice 1 chunk/Slice 0 chunk/Slice 1
chunk . . ..

The final chunks of each slice may be padded with zero
bits if needed due to the ceil( ) function.

With VBR enabled, the number of bits of coding each
slice may differ from P*bpp rate. For example, the number
of bits may be less than this value. The number of bits per
chunk may differ from floor (bits_per_pixel*slice_width),
for example the number of bits may be less than this value.
Slices may be multiplexed using chunks of unequal numbers
of bits. The numbers of bits per chunk may be indicated for
example by packet length information or marker codes in a
transport layer.

The display stream coding may be specified in terms of
components that are labeled Y, Co, and Cg. If the conver-
t_rgb flag is equal to 0 in the current PPS, the encoder may
accept YCbCr input. The Cb component may be mapped to
the Co component label. The Cr component may be mapped
to the Cg component label. In this case, the bit depth of the
Cb/Co and Cr/Cg components may be equal to the Y
component, whose bit depth is specified using the bits_per_
component field in the current PPS. If the convert_rgb flag
is equal to 1 in the current PPS, the encoder may perform
color-space conversion from RGB to YCoCg. The color
space conversion may be:

cscCo=R-B
t=B+(cscCo>>1)
cscCg=G-t

y=t+(cscCg>>1)

The cscCo and cscCg values have one additional bit of
dynamic range compared with Y. The final Co and Cg values
may be centered around the midpoint:

Co=cscCo+(1<<bits_per_component)

Cg=cscCg+(1<<bits_per_component)

Note that here, the bits_per_component variable may
represent the number of bits of each of the R, G, and B
components, which is one less than the number of bits per
component for the Co and Cg components. If a slice extends
beyond the right edge of a picture, the right-most pixel in
each line of the picture may be repeated to pad the slice to
the correct horizontal size. If a slice extends beyond the
bottom edge of a picture, the bottom-most pixel in each pixel
column of the picture may be repeated to pad the slice to the
correct vertical size.

Line Storage

The display stream compression may include buffer
memory to hold the previous line’s reconstructed pixel
values for MMAP prediction and ICH. In some cases, a
decoder line buffer may have sufficient storage to contain the
full-range reconstructed samples. However, some decoders
may choose to use a smaller bit depth to lower the imple-
mentation cost.

If a smaller bit depth is used, the decoder may commu-
nicate this to the encoder. The encoder may set the linebuf_
width according to what the decoder implementation sup-
ports. The following method for bit-reducing samples may
be used:
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shiftAmount=MAX(0,maxBpc-linebuf_width);
round=(shiftAmount>0)?(1<<(shiftAmount-1)):0;
storedSample=(sample+round)>>shiftAmount;

readSample=storedSample<<shiftAmount;

where maxBpc is the bit depth of the current component,
storedSample is the sample value that is written to the line
buffer, and readSample is the value that is read back.

Prediction Types

There are three prediction types that may be supported in
P-mode: MMAP, BP, and MPP.

Modified Median-Adaptive Prediction (MMAP)

The modified median-adaptive predictor is specified in the
table below.

TABLE 2
Pixels surrounding current group
c b d e
a PO P1 P2

Table 2 shows the labeling convention for the pixels
surrounding the three pixels in the group being predicted
(PO, P1, and P2). Pixels ‘c’, ‘b’, ‘d’, and ‘e’ are from the
previous line, and pixel ‘a’ is the reconstructed pixel imme-
diately to the left.

A QP-adaptive filter may be applied to reference pixels
from the previous line before they are used in the MMAP
formulas below. A horizontal low-pass filter [0.25 0.5 0.25]
may be applied to the previous line to get filtered pixels filtC,
filtB, filtD, and filtE. For example,

filtB=(c+2 *b+d+2)>>2;

The filtered pixels may be blended with the original pixels
to get the values that are used in MMAP (blendC, blendB,
blendD, blendE). The following method is used for the
blending:

diffC=CLAMP(filtC-¢,~QuantDivisor[glevel]/2,
QuantDivisor[glevel]/2);

blendC=c+diffC; diffB=CLAMP(filtB—b,—~QuantDivi-
sor[glevel]/2, QuantDivisor[glevel]/2);

blendB=b+diffB;

diffD=CLAMP(filtD-d,-QuantDivisor[glevel]/2,
QuantDivisor[glevel]/2);

blendD=d+diffD;

diffE=CLAMP(filtE-e,—~QuantDivisor[glevel]/2,
QuantDivisor[glevel]/2);
blendE=e+difiE;
The predicted value for each is given below:
PO=CLAMP(a+blendB-blend C,MIN(a,blendB),MAX
(a,blendB));

P1=CLAMP(a+blendD-blendC+R0O,MIN(a,blendB,
blendD),MAX(a,blendB blendD));

P2=CLAMP(a+blendE-blendC+R0O+R1,MIN(a,
blendB,blendD,blendE),MAX(a,blendB,blendD,
blendE));
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where RO and R1 are the inverse quantized residuals for
the first and second samples in the group.

In the case of the first line of a slice, the previous line’s
pixels are not available. So the prediction for each pixel
becomes:

PO=a;
P1=CLAMP(a+R0,0,(1<<maxBpc)-1);

P2=CLAMP(a+R0+R1,0,(1<<maxBpc)-1);

where maxBpc is the bit depth for the component that is
being predicted.

Block Prediction (BP)

The BP predictor is a pixel value taken from a pixel some
number of pixels to the left of the current pixel. The “block
prediction vector” (bpVector) is a negative value that rep-
resents the number of pixels to the left to use for the
prediction. In one implementation, the block prediction
vector is always between -3 and -10 inclusive, which means
that it uses samples outside of the current group.

The BP predictor is used to predict all three components
from the pixel referred to by the block prediction vector:

P[hPos]=recon[hPos+bpVector];

So the predicted values for the 3x1 group correspond with
the reconstructed pixels values for the 3x1 set of pixels that
is pointed to by the block prediction vector.

Midpoint Prediction

The midpoint predictor is a value at or near the midpoint
of the range, and depends on the value of the reconstructed
pixel immediately to the left of the current pixel (pixel “a”
in Table 2).

midpointPred=(1<<(maxBpc-1))+(a&((1<<qLevel)-
D);

where maxBpc is the bit depth for the component being
predicted, and gl.evel is the quantization level that applies to
the current component.

Predictor Selection

Block prediction is supported by the encoder 1300. The
encoder 1300 may choose to disable block prediction in the
stream (e.g., because the attached decoder does not support
block prediction or because the picture would not benefit
from block prediction) by setting block_pred_enable in the
PPS equal to 0. In this case, MMARP is selected over block
prediction, and the algorithms in this section are not used.

The decision to use either BP or MM AP may be made on
a group basis using information from the previous line. This
means that the decision can be made up to a line time in
advance of processing the current group if it helps the
implementation. The group referred to in this section starts
at a horizontal location of hPos pixels from the leftmost
pixel column in the slice.

FIG. 21 shows an example 2100 of 3x1 partial SADs that
form 9x1 SAD. First, a search may be performed to find the
best block prediction vector. The reference pixels for the
SAD may be the set of 9 pixels in the previous line starting
at a horizontal location of hPos -6. The SAD is computed
between the reference pixels and 9 different block prediction
candidateVector’s (-1, -3, -4, -5, -6, -7, -8, -9, and -10)
pointing to the previous line’s pixels. The 9-pixel SAD is
computed as a sum of 3 3-pixel SAD’s (see FIG. 21). First,
each absolute difference may be truncated and clipped
before being summed in the 3-pixel SAD according to:

modifed AbsDiff=MIN(absDiff>>(maxBpc-7),0x3F);

where maxBpc is the bit depth for the current component.
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The resulting 6-bit modified AbsDiff values are summed
over each set of three adjacent samples and over the 3
components, resulting in a 10 bit value that represents the
3x1 partial SAD for one component; this 10-bit value is
clamped to 9-bits (e.g., values greater than 511 are clamped
to 511). Three 9-bit 3-pixel partial SAD’s are summed to get
the final 9-pixel SAD, which is an 11-bit number. The 3
LSB’s of each 9x1 SAD are truncated before comparison:

bpSad[candidateVector]=MIN(511,sad3x1_O[candi-
dateVector]+sad3x1_1[candidateVector]+
sad3x1_2[candidateVector]);

The 9 9-pixel SAD’s are compared to one another, and the
lowest SAD may be selected, with ties broken by selecting
the smallest magnitude block prediction vector. If the lowest
SAD block prediction vector is -1, the bpCount counter is
reset to zero and MMAP is selected for this group. If the
lowest SAD block prediction vector is not —1, the candidate
BP vector becomes the vector with the lowest SAD, and the
bpCount counter is incremented unless hPos<9.

BP may be selected if the following conditions are all
true:

The bpCount value is greater than or equal to 3.

lastEdgeCount is less than 9. The lastEdgeCount value
represents the number of pixels that have gone by since an
“edge” occurred. An “edge” occurs when ABS(current
sample-left sample)>32<<(bits_per_component-8) for any
component.

Selecting Between BP/MMAP and MPP

The encoder may decide whether to use BP/MMAP based
on the size of the quantized residuals that would be gener-
ated if BP/MMAP were selected. For example, the encoder
may determine the maximum residual size for BE’/MMAP
for each of the three components. If the maximum residual
size for any component is greater than or equal to a threshold
such as maxBpc—qlevel for that component, then MPP may
be selected for that component.

In addition, the encoder may select MPP in order to
enforce a minimum data rate to prevent underflow.

Quantization

The predicted value of each sample of the pixel is
subtracted from the corresponding input samples to form the
residual sample values E, one for each component of the
pixel.

E=x-Px, where x is input, Px is predicted value.

Each residual value E may be quantized using division
with truncation by a divisor that is a power of 2 and using
rounding with a rounding value that is 1 less than half the
divisor.

If E<0 QE = (E-ROUND)/DIVISOR
Else QE = (E+ROUND)/DIVISOR
// the “/” operator is div with truncation as in C

Where:

DIVISOR=2**g]evel=1<<qLevel

ROUND=DIVISOR/2-1

The value of qLevel may be different for luma and chroma
and is determined by the rate control (RC) function.

MPP quantized residuals may be checked to ensure that
their sizes do not exceed a threshold such as maxBpc-
qlevel, where qlevel is the quantization level for the
component type (luma or chroma) and maxVal is the maxi-
mum possible sample value for the component type. If an
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MPP residual exceeds this size, the encoder may change the
residual to the nearest residual with a size of maxBpc—-q
Level.

Inverse Quantization and Reconstruction

The encoder may follow the same process used in the
decoder to arrive at the reconstructed pixel values. For pixels
that are predicted using MMAP, BP, or MPP, the recon-
structed sample value may be:

reconsample=CLAMP(predSample+
(quantized_residual<<gLevel),0,maxVal);

where predSample is the predicted sample value, quan-
tized_residual is the quantized residual, qLevel is the quan-
tization level for the component type (luma or chroma), and
maxVal is the maximum possible sample value for the
component type.

Flatness QP Override

FIG. 22 shows an example 2200 of original pixels used
for encoder flatness checks. Encoders generate a “flatness
signal” if upcoming input pixels are relatively flat to allow
the QP to drop quickly. The encoder algorithm to determine
the flatness bits in the syntax is described below, as is the
algorithm that both the encoder and decoder follow to
modify the QP.

Encoder Flatness Decision

A set of 4 consecutive groups is called a supergroup. The
encoder examines each supergroup before it is encoded in
order to determine which, if any, of the groups are “flat”. The
first supergroup starts with the 2nd group in the slice as
shown in FIG. 22. Supergroups may be defined consecu-
tively within the slice. A supergroup that includes the last
group of a line may wrap around to include groups on the
subsequent line.

The flatness determination may be done for each group
within the supergroup independently and includes a deter-
mination of the “flatness type” (e.g., either somewhat flat or
very flat) for each group. Two flatness checks may be
performed, both using pixels from the original, uncom-
pressed image.

Flatness check 1 determines the MAX and MIN value
among the samples shown in FIG. 22 for each component.
A value of flatQLevel is determined for each component:

flatQLevel=MapOpToQlevel(MAX(0,masterQp-4));

The masterQp value that is used is the one that is used for
rate control for the 2nd group to the left of the supergroup
that is being tested. MapQptoQlevel maps the masterQP
value to qLevelY (luma) and qLevelC (chroma) values that
are used for both luma and chroma. For example, a mas-
terQP value of 0 may map to gl.evelC and ql.evelY values
of 0, values 1 and 2 may map to ql.evelC values of 1 and 2
respectively, and successive unit increases in masterQP may
map to unit increases alternating between qlevelY and
qLevelC.

If the MAX-MIN for any component is greater than
(2<<(bits_per_component-8)), the check for very flat fails
for flatness check 1; otherwise, it passes. If the MAX-MIN
for any component is greater than QuantDivisor
[flatQLevel], the check for somewhat flat fails for flatness
check 1; otherwise, it passes.

It flatness check 1 indicates that the group is either
somewhat flat or very flat, that result is the final result that
is used for the group. If both fail, flatness check 2 is
performed over the 6 pixels indicated in FIG. 22. The same
comparisons are done as in flatness check 1, except that the
MAX and MIN are computed over 6 samples rather than 4.
The final result of flatness check 2 is then used as the final
result for the group.
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For a given supergroup, there are then four flatness
indications of either not flat, somewhat flat, or very flat. The
value of prevIsFlat is initialized to 1 if the previous super-
group had a flatness indication; otherwise it is initialized to
0. The following algorithm is used to distill the flatness
information into a single flatness location and type:

Loop over four groups in supergroup {
If !prevIsFlat && group is either very flat or somewhat
flat
Current group and flatness type is signaled
Else
prevIsFlat = 0;

If no group is selected, no QP modification is made and
flatness_flag for the supergroup is set to O in the entropy
decoder. If a group is selected, the flatness_flag for the
supergroup is set to 1, and the corresponding group is
signaled as the first_flat group in the bit stream along with
its associated flatness_type. The entropy encoder will only
signal flatness_flag if the masterQp value is within the range
of flatness_min_gp and flatness_max_qp, so no adjustment
is made in the RC if the corresponding masterQp is out of
range.

The encoder flatness searches do not span to the next line.
It a group within a supergroup falls on the next line, it is not
considered to be flat. However, the first group of a line may
contain the next_flatness_flag syntax element assuming the
syntax allows it at that point.

Flatness QP Adjustment

The encoder and decoder make the same QP adjustment
for a group where a flatness indication has been made. The
RC receives a flatness signal corresponding to a particular
group within a supergroup that may be either “somewhat
flat” or “very flat”. It should be noted that if the current
masterQp is less than 7<<(2*(bits_per_component-8)), the
flatness indication may be assumed to be “somewhat flat”.

For a “very flat” signal, the QP is adjusted as follows:

masterQp=1<<(2*(bits_per_component—8));

For a “somewhat flat” signal:
masterOp=MAX(stQp-4,0);

If there is no flatness signal for a particular group:

masterOp=stOp

If the flatness QP override modifies the masterQp, the
modified masterQp is used as the starting point for the
short-term rate control on the next RC cycle.

Buffer Model and Rate Control

In addition to, or as extensions of the implementations
described above, e.g., with respect to FIG. 7, some addi-
tional rate control techniques are next described. In some
implementations, the encoders and decoders ensure that a
complete image fits within a fixed number of bits. The
virtual buffer model described employs a defined and con-
trolled rate of bits per pixel and hence per unit time. In some
implementations the total number of bits per picture may be
larger than the product of the number of pixels times the bits
per pixel, by up to the size of the buffer model. In some
implementations, the encoders bound the entire coded pic-
ture size to the product of the number of pixels times the bits
per pixel rate. In that respect, the entire picture may be coded
such that it can be communicated over a number of line
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times that is equal to the number of lines in the image, and
there may be a fixed or bounded number of bits per pixel
time within those lines.

One modification to the virtual buffer model described
above is to increase the fullness of the buffer model, as used
by the encoder and/or the decoder, by a fullness offset. The
value of the fullness offset may be specified algorithmically.
Delays from start of encoding to start of transmission, and
from start of reception to start of decoding, are predeter-
mined. For example, the initial transmission delay may be
one line time, and the initial decoding delay may be one line
time, while the buffer model size may be large enough to
accommodate six line times at the specified transmission
rate.

In this example, the fullness offset may have an initial
value of 5*R*TI (5*the specified rate*one line time). This
causes the encoder to ensure that the fullness of the buffer
model does not exceed 1*R*TI, since the bottom 5*R*TI
portion of the buffer model is not available for use due to the
offset. The encoder may then reduce the offset value, by a
predetermined amount for each predetermined number of
pixels (e.g., once per pixel, or once per group of 3 pixels, or
other amount). The predetermined amount of reduction in
the offset value may be chosen such that the offset becomes
4*R*TT at the end of the first line of video, for instance. The
result is that the maximum number of bits that the encoder
might use to code the first line is 2*R*TI, and as a result
transmission of the first line is assured of being completed
within 2 line times, starting from the start of transmission.
The decoder begins receiving data at the start of transmis-
sion plus an arbitrary delay. The decoder begins decoding
one line time later, e.g., the initial decoding delay, and the
decoder completes decoding the first line one line time after
that. Therefore the decoder is assured of receiving all the
data it needs to decode the first line by the time the data are
needed.

The encoder may continue to reduce the fullness offset,
e.g., by the same predetermined number of bits per pixel,
until the offset value reaches zero. In this example, the offset
reaches O at the end of the 5th line. The offset stays at zero
until another time when the offset starts increasing. For
example, the fullness offset may start increasing by the same
predetermined number of bits pixel at the start of the line
that is the 5th line from the end of the image, and it continues
to do so until it has reached the value of 5*R*TI at the last
pixel of the image. As a result of the fullness offset values,
the encoder finishes coding the image with no more than
1*R*TI bits in the buffer model. This number of bits can be
transmitted within 1*TT or less time. Since in this example
the decoder started decoding the image 1*TT after it starts
receiving the compressed data, it finishes decoding the last
line of the image 1*TI after the last line time of data
reception. As noted, all of the bits that encode the end of the
image can be transmitted, and hence received, within 1*TI,
and therefore all the bits of the image are received by the
decoder by the time it needs them, including the last pixel of
the image.

In this example, all of the bits of the image are transmitted
within a number of line times equal to the number of lines
of the image, at a predetermined rate R. The buffer model
behavior facilitates high quality coding of the entire image,
with significant rate control freedom at the first and last
lines, and even more rate control freedom for the other lines.
In this example, where the size of the buffer model is
6*R*TI, for all but the first 5 and last 5 lines of the image,
the encoder has the freedom to utilize the full 6*R*TI size
of the buffer model for efficient coding of image content.
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The same technique may be applied to regions of an
image. For example, it may be desirable for the encoder to
partition an image into a fixed number of slices. Each slice
may have substantially the same number of lines. For
example, in an image with 1080 lines, there may be 8
equally sized slices of 135 lines each. The technique dis-
closed here may be used to ensure that each slice is fully
communicated in 135 line times. In the explanation above,
the start of a slice may substitute for the start of an image,
and the end of a slice may substitute for the end of an image.

The buffer model for rate control converts a varying
number of bits used to code each group or other set of
samples into a specified constant bit rate. As each group is
coded, the number of bits used to code the group is added to
the buffer fullness, and the number of bits that is to be
transmitted per group is subtracted from the buffer fullness.
The result is referred to as the buffer model fullness or
simply bufferFullness. This buffer fullness is modified by a
linear transformation, e.g., offset and scale, to produce a
value that is referred to as the rcModelFullness. The trans-
formation may allocate extra bits to the first line of each slice
and fewer bits to other lines, and to bound the maximum
number of bits in the encoder buffer at the end of each slice
to whatever the specified bound is. Both the first line
allocation and the end of slice bound are configurable.

The number of bits removed from the buffer model each
group may vary slightly from one group to the next in CBR
operation, since the specified number of bits per group may
include a fractional component. The bits_per_pixel rate may
be specified using 4 fractional bits, for example, giving a
resolution of Y16 bit per pixel. If the specified number of bits
per group is an integer, the number of bits removed from the
buffer model every group is equal to the specified integer. If
the fractional component is not zero, the fractional residual
resulting from removing an integer number of bits each
group is retained and applied to the next group.

In one implementation, the rcModelFullness may be
defined to use negative values, where the empty state is
represented by a value of —rc_model_size and the full state
is represented by a value of 0. The RC algorithm may be
designed to maintain the rcModelFullness value between
empty (e.g. —rc_model_size) and full (e.g. 0). The offset
value, reXformOffset, and scale value, rcXformScale, are
designed to convert the actual buffer fullness, bufferfull-
ness, which is always non-negative, into a rate control buffer
model fullness, rcModelFullness. The reason the empty
level is numerically negative and the full level is O relates to
the way the linear transformation is designed, as described
below.

The RC algorithm selects a quantization parameter (QP)
dynamically to both maintain the rcModelFullness within its
valid range and to optimize subjective quality. In general, the
RC seeks to code each group with approximately a target
number of bits, while the number of bits spent coding each
individual group can vary significantly. This behavior allows
unexpectedly difficult image features to be coded efficiently
while also coding smooth areas with very high accuracy; this
helps maintain approximately equal subjective quality
across the image without wasting bits.

The overall structure of the rate control technique 2300 is
shown in FIG. 23. The overall technique includes a buffer
level tracker 2350, linear transformation 2352, parameter
selection 2354, and QP adjustment 2356. Each is described
in detail below.

The rate control techniques described above are very good
for steady state operation, such as when the encoder is
coding entire images. Slice rate control techniques described



US 9,451,250 B2

37

below address coding an initial part of an image, such as the
first line of a slice, while meeting the bound on the total
number of bits per slice to num_pixels*bpp (bits per pixel
rate).

One adaptation to the rate control techniques described
above is keeping the total number of bits to be less than or
equal to the product of a specified number of pixels
(num_pixels) times bpp. The techniques may do so, in one
implementation, by bounding the number of bits in the
encoder’s buffer when the last pixel is coded and delaying
the start of transmission of each picture or slice according to
this bound. A slice may be one or more lines high, where
each line is typically one pixel high. Coding of the initial
portion (e.g., the first line) of each slice or picture is jointly
optimized with the coding of the remaining lines of the slice.
A “slice” may include the case where a whole picture is one
slice. The techniques allocate additional bits for the first line,
in accordance with the unavailability of prediction informa-
tion at the first line, and allocating accordingly fewer bits for
all other lines in the slice.

The number of additional bits that the encoder may
allocate for the first line depends on the number of bits for
achieving the desired subjective quality level at the first line
of each slice, and on the content being coded. The encoder
may balance this number against the reduced number of bits
that are allocated to the remaining lines in order to meet the
constraint that total_bits<=num_pixels*bpp.

Image content to be compressed varies widely. For deter-
mining the values of the numbers of bits on the first and
other lines, one may examine representative images, such as
images that are considered difficult to encode. Empirical
evidence indicates that, for example, for 12 bpp (bits per
pixel) constant bit rate coding, pixels in the first line should
be allocated on average an additional 5 bpp each. That is, the
average number of bits used to code pixels in the first line
may be approximately 17 bpp. However, the stream rate
remains 12 bpp in CBR (constant bit rate) coding. The CBR
rate refers to a rate of bits that exit a rate buffer, while the
numbers of bits used to code each pixel enter the rate buffer.
For images that are less challenging to encode, sufficient
quality may be obtained with fewer bits on average spent
coding each pixel. For images that are not especially difficult
to encode well, it may be desirable to encode them loss-
lessly, or at least with reduced quantization.

The encoder may enforce an upper bound, i.e. a maximum
number of bits in the encoder buffer at the end of each slice
regardless of the difficulty of coding each image. The
maximum number of bits that may be permitted in the
encoder buffer at the end of each slice may be determined
empirically. Experiments have shown that 4 kb (4,096 bits)
is a suitable value, but other values may be chosen depend-
ing on the application, for example 2 kb or 8 kb.

In one implementation, a rate control adaptation function
utilizes a transformation of an encoder buffer model fullness
to form a rate control (RC) buffer model fullness. These two
values may be referred to as “actual fullness” and “RC
fullness” respectively. The transformation may be a linear
transformation, such as multiplication by a scale value and
addition of an offset value, or it may be a non-linear
transformation.

The RC fullness influences the quantization step or
parameter (QP). Specifically, as the RC fullness increases,
the QP may also increase, and the number of bits that code
individual pixels is generally reduced. As the RC fullness
decreases, the QP also decreases, and the number of bits that
code individual pixels generally increases. The encoder may
implement RC fullness ranges, and for any given range,
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there may be a minimum QP and a maximum QP. The RC
control techniques below allocate additional bits for each
pixel to the first line to help avoid image artifacts, particu-
larly given that no prior prediction information is available
for the first line to help with the encoding of the first line.
The techniques may allocate a pre-determined number of
additional bits for each pixel for the first line, leading to
better coding consistency for the first line of a slice. The
additional bit per each pixel budget may be taken away for
subsequent lines.

In one implementation, the value of RC fullness may be
calculated as RC fullness=(actual fullness+offset)*scale.
Buffer Level Tracker

FIG. 24 shows an example buffer level tracker 2350.

The codedGroupSize input 2402 is an output from the
entropy encoder or entropy decoder that indicates how many
bits were used to code the previous group. The bitsPerGroup
input 2404 is the number of bits allocated for each group,
which may vary by +/-1 if bits_per_pixel contains nonzero
fractional bits:

bpgFracAccum += (3 * bits_per_ pixel) & 0xf; // 4 fractional
bits
if(groupCount < initial _enc_ delay)

bitsPerGroup = 0;
else

bitsPerGroup = floor(3 * bits_per_ pixel) + (bpgFracAccum
>>4);
bpgFracAccum &= 0xf;

If vbr_enable is equal to 1, the bufferFullness output 2406
is clamped at O if the final modified value would be less than
0. In this case, the forceMpp output 2408 may always be 0.

If vbr_enable is equal to 0, the bit stuffing detection logic
2410 checks if the next group could potentially cause an
underflow condition (e.g., resulting in a bufferFullness that
is less than zero). If so, the forceMpp output 2408 is set to
1, which indicates to the entropy encoder to use MPP mode
in order to guarantee a minimum bit rate or to prevent buffer
underflow. The forceMpp output 2408 may be determined as
follows:

forceMpp=(groupCount>initial_enc_delay)&&
(bufferFullness<ceil(bits_per_pixel*3)-3);

where groupCount is a counter that starts each slice at 0
and increments every group. The register 2412 stores the
current value of the buffer fullness.

FIG. 25 shows an example of encoder logic 2500 that may
implement rate control. The encoder logic 2500 implements
a buffer model 2502, transformation logic 2504 (which may
implement the transformation logic 2352), and quantization
adjustment 2506 logic (which may implement the logic 2354
and 2356, as examples). The encoder logic 2500 also
includes an offset value generator 2512 that produces offset
values 2508, and a scale value generator 2514 that generates
scale values 2510. The implementation may be in hardware,
software, or both, and is described in further detail below.

For illustration of the rate control, assume that the bpp
rate is 12 bpp, the first line of each slice should be allocated
17 bpp, and the slice is 8 lines high. The total number of bits
per slice is 12 bpp*slice_width*8 lines. With 17 bpp allo-
cated to the first line, the budget for the remaining lines is
(12 bpp*8 lines-17 bpp*1 line)/(8-1) lines, or approxi-
mately 11.29 bpp. Assume the maximum number of bits
permitted in the buffer at the end of each slice=4 kb
(kilobits). The number of pixel times corresponding to
transmission of 4 kb is ceiling (4096 b/12 bpp)=342 pixel
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times. Therefore the initial transmission delay is set to 342
pixel times. In other words, at the start of each slice no data
are transmitted for the first 342 pixel times, and thereafter
data are transmitted at 12 bpp for a number of pixel times
equal to the number of pixels in the slice, including 342 pixel
times after the last pixel is coded.

For the first 342 pixels of the first line, data accumulate in
the encoder buffer at a rate of approximately 17 bpp, for a
total of approximately 342%17=5,814 bits. Assuming an
image width of 1920 pixels, there are 1920-342=1,578
additional pixels in the first line. As these pixels are coded,
the number of bits used to code each pixel is expected to be
on average 17 bpp, while the transmission rate is 12 bpp,
hence coded data accumulate in the encoder buffer at rate of
approximately 5 bpp. This additional accumulation is
approximately 1578%5=7,890 bits. In this case the total
accumulation of bits in the encoder buffer at the end of the
first line is approximately 5,814+7,890=13,704 bits.

The encoder may generate values for the offset value 2508
using an offset value generator 2512. The generator may
produce offset values that follow a trajectory such that the
sum of actual fullness+offset has desired values at various
points in the coding of a slice or picture. For example,
continuing with the example above, the expected actual
buffer fullness after coding the first 342 pixels of a slice may
be 5814 bits, and the desired RC fullness may be 2048 bits,
hence the offset value may be 2048-5814=-3766 immedi-
ately after coding the 342nd pixel. The offset value before
coding the first pixel may be 0. The expected actual fullness
after coding the first full line may be 13704 bits. If the
desired RC fullness is 2 kb at that point, the offset value may
be 2048-13704=-11656. The offset value at the end of the
slice may be 0. The offset value may progress linearly from
the first specified value to the 2nd and then to subsequent
specified values. That is, the offset value may be piecewise
linear between inflection points, e.g., in FIG. 26, from 0 to
-3766, from -3766 to —11,656, and from -11,656 to zero.
Note that the example above uses positive rate control
thresholds (see FIG. 28), and that the offset values may be
negative or positive at any given point along the trajectory
of the offset value. In other implementations, the rate control
thresholds may be negative valued thresholds. In that case,
the offset values may be strictly negative values, because
actual fullness is non-negative, and a negative offset value
would be used to bring the transformed fullness value down
into a negative threshold range.

The encoder logic 2500 may generate values for the scale
value 2510 using a scale value generator 2514. The scale
value generator 2514 may be designed to produce a scale
value that follows a specified trajectory. For example, the
value of scale may be 1 at the start of a slice and remain 1
until a certain pixel within the slice, and then linearly
progress to another value such as 2 at the end of the slice.
In the example of FIG. 24, at the end of a slice the offset
value is O and the scale value is 2. As a result, an actual
fullness value of 4 k results in a RC fullness value of 8 k.
This may be desirable if a design goal is to bound the
maximum number of bits in the encoder buffer to 4 k, while
the RC algorithm utilizes a control algorithm that bounds the
RC fullness to 8 k. As with the offset value 2508, the scale
value 2510 may be piecewise linear between inflection
points, e.g., in FIG. 26, remaining at 1.0 for a time, and then
linearly increasing from 1.0 to 2.0. The bit trajectories may
differ between implementations. For example, the bit tra-
jectories may try to keep the bottom of the effective rate
control thresholds at approximately zero at the beginning
and end of a slice. Further, approximations to such bit
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trajectories may be employed to reduce implementation
complexity or for other reasons.

FIG. 26 shows an example of bit trajectories 2600 over
time, as described above, including the scale parameter 2510
and offset 2508. FIG. 26 also illustrates the effect of the
parameters on RC fullness 2602, and also shows the
expected maximum actual buffer fullness 2604. As shown,
17 bpp (12 bpp nominal plus 5 extra bpp) are allocated for
the first 342 pixels, and 5 bpp are allocated for the remainder
of the line. During time 2650, bits accumulate in the buffer
for the transmit delay of 342 pixels, and during time 2652
leave the buffer at 12 bpp thereafter. With 17 bpp allocated
for the first line, 5 bpp accumulate in the buffer during time
2652. After the first line, during time 2654, the allocated bpp
drops below 12, and the actual buffer fullness drops accord-
ingly, as bits continue to leave the buffer at 12 bpp. At the
end of the slice 2 kb actually remain in the buffer, but due
to the scale value of 2.0, the RC fullness is 4 kb. The number
of' nominal bpp and the additional bit budget for the first line
may vary widely. For example, the number of nominal bpp
may range between 6 and 24.

The RC techniques permit a non-zero actual buffer full-
ness at the end of the slice. This may help avoid heavy
quantization at the end of the slice, which leads to visual
artifacts. The RC techniques allow the rate buffer to track to
where it would normally go, responsive to the image con-
tent. Note that the scale value 2510 is applied to the buffer
fullness. Accordingly, a scale value of 2.0 effectively drops
the nominal buffer range (e.g., of 8 kb) to a smaller range
(e.g., 4 kb). That is, the encoder may apply the scale value
to decrease the effective buffer range when the encoder
wants the real buffer fullness to track within a smaller range.

Alternatively, the offset value generator 2512 may be
configured to generate values of offset that reach, for
example, 4 k at the end of a slice. For example, an actual
fullness at the end of a slice of 4 k added to an offset value
of'4 k produces an RC fullness value of 8 k at the end of the
slice.

Alternatively, the offset value 2508 may follow a trajec-
tory that ends with a negative value such as —4 k. In this
example the RC algorithm may have an effective range of
RC fullness from -8 k to 0, where -8 k may be correspond
to an empty buffer model and 0 may correspond to a full
buffer model. The scale value may follow many different
trajectories. For example, one trajectory has a value greater
than or equal to 1 from the start of the slice, then decreasing
to, e.g., a value equal to 1 while encoding the interior of the
slice, then increasing to a scale value to greater than or equal
to 1 at the end of the slice.

FIG. 27 shows an example 2700 of offset fullness and
actual fullness in relation to the scale parameter 2510, for
different types of content. In particular, the example 2700
illustrates offset fullness and actual fullness for what is
considered worst case content, hard content, easy content,
and moderate content. The references in FIG. 27 to “WC”
indicate “worst case” scenarios.

The linear transformation by the scale value 2510 and
offset value 2508 by the transformation logic 2504 manages
the buffer fullness over the course of the slice. It has three
main functions: 1) keep the quality constant during the slice,
including the initial delay; 2) allocate extra bits for the first
line of each slice; and 3) ensure that the slice is coded within
the correct number of bits by constraining the final encoder
buffer fullness.

FIG. 27 shows the range compression caused by the scale
value 2510. Starting on the left, with a range of actual buffer
fullness O to 8 kb, and on the right, ending the slice with a
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range of 0 to 4 kb. FIG. 27 shows the bit trajectories to the
right of the end of the first line 2702. Note that the actual
fullness for ‘easy’ content does not go below zero, but that
additional bits may be generated to keep the actual fullness
above zero.

In the lower section of FIG. 27, the buffer model fullness
ranges of 0 to -8 k are shown. The lower section shows what
happens to the fullness after the scale and offset are applied,
and how it falls within the ranges.

In one implementation, the linear transformation logic
2352 or 2504 implements the following, where the scale
value 2510 is referred to as rcXformScale and the offset
value 2508 is referred to as reXformOffset:

reModel Fullness=(rcXformScale* (bufferFullness+
reXformOffset))>>3

The reXformOffset is designed to perform the functions
listed above. The reXformScale factor is applied throughout
the slice to convert a reduced actual buffer fullness range to
a complete buffer model fullness range at the end of a slice,
to have a certain effect on the range conversion at the start
of a slice, and to gradually change the conversion over the
course of a slice, for example starting after the first line.

The encoder may choose a range of values of rcXfor-
mOffset to be negative in order to produce a negative range
of rceModelFullness. This is done so that a coarse resolution
of the reXformScale factor has minimum effect on the value
of rcModelFullness when it is nearly full, since the error
term resulting from coarse quantization times a value near
zero results in an error that is near zero. The rcXformScale
factor quantization error is instead shifted to the empty end
of the rcModelFullness range, where it has an insignificant
effect.

The rcXformOffset value starts each slice at a known
initial value initial_offset-rc_model_size. The reXformOff-
set modification per group includes of the superposition of
several things:

In one implementation, during the initial delay, the rcX-
formOffset decreases at a rate of (bits_per_pixel*3) bits per
group.

During the entire slice, the reXformOffset increases at a
rate of slice_bpg_offset.

During the first line of a slice, the rcXformOffset
decreases at a rate of first_line_bpg_offset bits per group.

During the non-first lines of a slice, the offset increases at
a rate of nfl_bpg_offset bits per group.

The reXformOffset value may be prevented from exceed-
ing final_offset-rc_model_size during non-first lines of a
slice, although this limit is unlikely to be enforced until near
the end of a slice.

The reXformOffset value is tracked with a precision of,
for example, 11 fractional bits. So the per-group adjust-
ments, such as slice_bpg_offset or nfl_bpg_offset, are speci-
fied with 11 fractional bits of precision. At the beginning of
a slice, the initial rcXformScale value is set to initial_sca-
le_value. Accordingly, the initial scale factor may be greater
than 1 at the beginning of a slice. At the beginning of a slice,
the reXformScale factor decreases by 1 every scale_decre-
ment_interval groups until it reaches unity scaling.

On the last line of a slice, the reXformScale factor ramps
up smoothly from, e.g., 8 (in units of %4) by incrementing by,
e.g., 1 every scale_increment_interval groups.

The net effect of the reXformOffset and rceXformScale is
to allow the buffer fullness to grow according to an alloca-
tion of extra bits in the first line and a specified initial
transmission delay, to smoothly ramp down the maximum
fullness from the end of the first line until the end of the
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slice, and to ensure that the number of bits in the buffer at
the end of the slice  does not  exceed

initial_enc_delay*3*bits_per_pixel-the maximum number
of padding bits that could be generated by the substream
multiplexing process.

Long Term Parameter Selection

As noted above, long term parameter selection logic 2354
is included in the encoder. In the long term parameter
selection logic 2354, the value of reModelFullness may be
classified as being in one of a number of ranges, for example
the ranges 2800 shown in FIG. 28. The set of ranges is
determined by a set of thresholds. There may be, for
example, 15 ranges that are defined by 14 thresholds
(rc_buf_thresh) and the rc_model size. For each range,
there may be a minimum quant value (rc_min_qp), a maxi-
mum quant value (rc_max_gp), and an offset (rc_bpg_off-
set) that adjusts the target bits per group.

The rc_min_qp and rc_max_qp values for each range are
configured such that when the RC buffer fullness is at or near
empty, the RC sets the masterQp value either to O or near
zero, and as the RC buffer fullness approaches full, the RC
increases the masterQp value, eventually reaching a point
where it sets the masterQp to the maximum valid value when
the RC buffer fullness is nearly full. The target number of
bits per group is greatest when the RC fullness is empty and
least when the RC fullness is full.

The rc_model_fullness is compared to a number of
thresholds to determine which one of 15 ranges it is in. Each
range has an associated rc_min_qp, rc_max_qp, and rc_b-
pg_offset that are used for the short-term rate control. In one
implementation, the encoder uses threshold values from
-rc_model_size to 0, and these values can be found by
subtracting the rc_model_size from a set of positively
defined thresholds. The 6 LSB’s of each threshold may be
assumed to be zero to facilitate an efficient look-up table
implementation for the threshold comparison function.

The values minQp, maxQp, and bpgOffset at each range
of buffer model fullness are loaded with the rc_min_qp[ |,
rc_max_qp| |, and rc_bpg_offset| | values that correspond to
the range corresponding to rcModelFullness.

Short Term Parameter Selection

As noted above, short term parameter selection logic 2356
is included in the encoder. The short term parameter selec-
tion logic 2356 makes adjustments to the QP, and may use
information from the entropy encoder in order to make final
adjustments to the QP.

The short term parameter selection logic 2356 may imple-
ment the short-term rate control logic shown in FIG. 29 and
the QP increment logic shown in FIG. 30. The parameter
minQP refers to the minimum QP value permitted for a
given range. The value of the previous QP, prevQp, is the
most recent master QP value, masterQp, that was generated
for the previous group. The masterQp that was used before
that is referred to as prev2Qp in FIG. 30.

The logic 2900 determines a bits per group (BPG) target,
tgtMinusOffset, and a tgtPlusOffset (2902). Depending on
the results of the tests 2904, 2906, and 2908, the short term
QP (stQP) is changed. Specifically stQP may change to: the
maximum of the previous QP minus 1 and the minimum QP
divided by 2 (2910), the maximum of the previous QP minus
1 and the minimum QP (2912), an incremented value (2914),
or may remain at the previous QP (2916).

FIG. 30 shows the example QP increment logic 3000 that
may generate the incremented value, e.g., in connection with
FIG. 29 (2914). The logic 3000 sets the current QP to the
maximum of the minimum QP and the previous QP (3002).
Depending on the results of the tests 3004, 3006, 3008,
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3010, and 3012, stQP is set according to one of two options.
In the first option, the stQP is set to the current QP (3014).
In the second option, the stQP is set to the minimum of the
maximum QP and the current QP plus an increment amount
(3016). The increment amount, incrAmount, may be deter-
mined as described in the following paragraphs.

The value of reXformBpgOfiset is an offset that is posi-
tive for the first line in each slice and negative for all other
lines in the slice, which is calculated internally:

44

A description of the parameters used above follows:

reXformBpgOffset—an internal variable that represents a
bits per group offset selected for different lines of a slice,
determined as noted above.

first_line_bpg_offset—This value specifies the number of
additional bits that are allocated for each group on the first
line of a slice.

nfl_bpg_offset—This value specifies the number of bits
(including fractional bits) that are deallocated for each group

0 for groups after the first line of a slice.

if ( first line of slice ) . slice._bpg_oﬁ.set—T.his value specifies the number of bits

reXformBpgOffset = first_line_ bpg_ offset; (including fractional bits) that are deallocated for all groups

else " . doortul b . in order to enforce the slice constraint (e.g., that the final

i reX OHHBpg(z foet = —floor(nflbpg _offset); fullness cannot exceed the initial encoder delay*bits per
if ( groupCount >= initial _enc__delay) 15

reXformBpgOffset —= floor(slice__bpg offset); group).

initial_offset—This value specifies the initial value for

The target number of bits for each group, e.g., the target rchoerﬁset, which is, for. example, initial_offset-rc_
activity level used by the rate control, is called rcTgtBits- model_size at the §tan ofa shce.:. .

Group: 20 final_offset—This value specifies the maximum end-of-
ToBiG . el hpgOft slice value for rcXformOffset, which is, for example,
rcTgtBitsGroup=roun its_per_pixel)+bpgOfiset+ .
reXformBpgOffiset ﬁnal_oﬂ“set—rc_model_.sme .
. ) rc_edge_factor—This value may be compared to the ratio

In addition to responding to the rcModelFullness, the RC of current activity to previous activity in order to determine
gdjusts thf: QP according to a measure of Fhe activity of.the 25 the presence of an “edge”, which in turn determines whether
image, using values from. the entropy coding called reSize- or not the QP is incremented in the short-term rate control.
Group and codedGroupSize, which are rough measures of - - -

. . rc_quant_incr_limit0—This value may be a QP threshold
the activity of the group preceding the current group. The : .

rate control calculates high and low bits per group thresh- that is used in the short-term rate control.

olds: rc_quant_incr_limit1—This value is a QP threshold that
’ 30 may be used in the short-term rate control.

tgtMinusOffset=reTgtBitsGroup—re_tgt_offset_lo rc_tgt_offset_hi—This value specifies the upper end of
tgtPlusOffsct—reTgiBitsGroups e 1gt offset hi Fhe range of variability around the target bits per group that

i i is allowed by the short-term rate control.

The codedGljoupSlze and rcSizeGroup values are com- 35 rc_tgt_offset_lo—This value specifies the lower end of
pared to tgtMinusOffset and tgtPlusOffset to determine ™ the range of variability around the target bits per group that
whether the activity of the local region of the image is within is allowed by the short-term rate control.
the expected range, below the expected range or greater than The increment to the QP (incrAmount) may be deter-
the expected range. The value for rcSizeGroup is also : : .

. o mined according to:
compared to the constant 3 which represents the minimum 0
possible number of bits per group. Based on these compari- inerAmount—(codedGroupSize_reTaBitsGroup)>>1:
sons, the RC increases or decreases QP or leaves QP
unchanged subject to the min and max QP bounds that apply The resulting QP is called stQP, which may be modified
to each range. by the flatness QP override logic that was described above

If the reModelFullness falls in the top-most range, the QP with regard to FIG. 22.
may be automatically set to rc_max_qp for that range to 4 The encoder maps the masterQp value to qlLevelY and
avoid overflowing the buffer. There are three other param- qLevelC values that are used for both luma and chroma. The
eters that are shown FIG. 30: rc_edge_{factor, rc_quant_in- encoder may implement a wide variety of mappings, once of
cr_limitl, and rc_quant_incr_limit0. which is shown in the table below.

8bpc 10bpe 12bpc
masterQp qLevelY  qLlevelC  gLevelY qLevelC qLevelY qLevelC
0 0 0 0 0 0 0
1 0 1 0 1 0 1
2 0 2 0 2 0 2
3 1 2 1 2 1 2
4 1 3 1 3 1 3
5 2 3 2 3 2 3
6 2 4 2 4 2 4
7 3 4 3 4 3 4
8 3 5 3 5 3 5
9 4 5 4 5 4 5
10 4 6 4 6 4 6
11 5 6 5 6 5 6
12 5 7 5 7 5 7
13 5 8 6 7 6 7
14 6 8 6 8 6 8
15 7 8 7 8 7 8
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-continued
8bpc 10bpe 12bpc
masterQp qLevelY  qLevelC  qLevelY qLevelC qLevelY qLevelC
16 7 9 7 9
17 7 10 8 9
18 8 10 8 10
19 9 10 9 10
20 9 11
21 9 12
22 10 12
23 11 12

Returning to the offset and scale parameters noted above
with respect to FIG. 25, and giving some specific examples,
the offset value generator 2512 and the scale value generator
2514 may produce coarse approximations of the values
described as linear trajectories. For example, a differential
value may be added to an accumulator for every certain
number of pixels. The scale and offset values and the
operations that use them may have a specified accuracy and
resolution.

As a specific example, it may be desirable to obtain
approximately 2 kb of RC fullness throughout the coding of
a slice. The encoder may apply, as noted above, a linear
transformation comprising an offset and a scale factor to the
actual fullness to produce the RC fullness. Throughout the
first line, the scale factor has a value of 1.0. At the first pixel
of the first line, the offset value=0 and the scale value=1.
While it may be desirable to utilize a positive offset value at
the first pixel in order to obtain an RC fullness value of 2 kb,
this may not be desirable with less difficult content that
could potentially be coded without quantization loss, hence
in this example the initial offset value is set to 0.

At the first pixel, the RC fullness equals the actual fullness
since the scale factor is 1 and the offset is 0. As the leading
pixel set (e.g., the first 342 pixels) are coded, the actual
fullness increases at a rate of approximately 17 bpp for
difficult images. To achieve an RC fullness that is 2 kb at the
end of the leading pixel set, the offset value decreases
linearly from O to a value of —-(342%17)+2048=-3,766 at the
342nd pixel. That is, for an actual fullness of 342*17=5,814
bits, an offset of -3,766 is applied, resulting in an RC
fullness of 5,814-3,766=2,048 bits. As the remaining 1920-
342=1578 pixels of the first line are coded, again the RC
fullness is maintained at approximately 2 kb by having the
offset value decrease linearly from -3,766 at the 342nd pixel
at a rate of 5 bpp for 1578 pixels, resulting in a value of
-3766—-(5%1578)=-11,656 at the end of the first line. At the
end of the first line, the number of bits used to code the first
line is expected to be approximately 1920%17=32,640, the
actual fullness is expected to be approximately 342%17+
1578*%5=13,704 bits and the resulting RC fullness is 13,704-
11,656=2,048 bits.

After coding the end of the first line, e.g., at the start of
coding the 2nd line, the offset value begins to increase
linearly from its initial value of -11,656 to a final value of
0 at the last pixel of the slice. Again, while it might be
desirable to set the offset to a positive value at the end of the
slice for purposes of coding a difficult image, it may be
preferable to maintain the offset value at least than or equal
to 0, to enable lossless coding of images or slices which
could potentially be coded losslessly at the available bit rate.
If the scale factor were maintained at 1.0 throughout the
slice and the actual fullness were 2 kb at the end of the slice,
the offset of 0 would result in an RC fullness value of 2 kb.
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However, the scale factor increases linearly from 1.0 at the
end of the first line to 2.0 at the end of the slice. As a result,
an actual fullness of 2 kb produces an RC fullness of 4 kb.
Since in this example the RC has a span of 8 kb, the
maximum RC fullness that the RC permits is 8 kb; this
corresponds to an actual fullness of 4 kb, which corresponds
to the maximum actual allowed fullness at the end of the
slice.

The combination of the increasing offset and the increas-
ing scale factor from the start of the 2nd line until the end
of the slice decreases the bit budget available for coding
pixels from the 2nd line through the end of the slice. If the
content being coded results in an actual buffer fullness of 4
kb at the last pixel of the slice, the bit budget for the 2nd
through 8th lines is the total number of bits minus the
expected number of bits used to code the first line divided by
the remaining number of pixels, (1920*8%*12-1920*17)/
(1920*7) or approximately 11.29 bpp, as noted previously.
The adjustment of the offset value results in a reduction in
the bpp budget of 11,656 bits/(1920 pixels/line*7 lines) or
approximately 0.867 bpp, resulting in a net bpp budget of
12-0.867 or approximately 11.133 bpp, if the actual fullness
at the end of the slice is the same as it is at the end of the
first line. However, if the actual fullness at the end of the
slice is 2 kb more than it is at the end of the first line, e.g.,
4 kb at the end of the slice vs. 2 kb at the end of the first line,
the reduction in bit budget is (11,656-2048)/(1920%7)
approximately 0.715 bpp, for a net of 12 bpp-0.715 bpp or
approximately 11.29 bpp. The increase in the scale factor to
2.0 allows the maximum number of bits at the end of the
slice to be bounded by the RC to 4 kb, while the RC range
spans 8 kb. For content that does not produce a large number
of bits at or near the end of the slice such that the actual
fullness would be small in the absence of a scale factor, the
scale factor may have little effect.

The encoder may be configured to insert stuffing bits after
producing the last bits that code pixels in a slice when the
total number of bits used to code a slice is less than the target
number, thereby producing exactly the target number of bits.
The target number of bits may be the product of the number
of pixels in a slice times the bits/pixel rate.

In the encoder, offset value generator 2512 may compute
offset values by adding an incremental value to an accumu-
lator each pixel, Group or other interval. For instance, there
may be three increment values, a first value for the first
transmission delay portion of the slice, a second value for
the remainder of the first line, and a third value for the
remainder of the slice. If the offset is incremented every 3
pixels (one Group), there are 114 groups in the first 342
pixels, corresponding to the initial transmission delay. The
values given in the example here result in a first increment
value of approximately —33.035. The accuracy of the incre-
ment may be chosen to be sufficient such that the value of
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the offset at the end of the initial transmission delay is close
enough to the desired value of -3766; it does not need to be
exact. For example, if an error of 1% or approximately 38 is
permitted, the increment value may differ from the ideal
increment value by 38/114=0.333. Using binary arithmetic,
the increment may be specified with 1 fractional bit such that
the maximum error is 0.25. Thus the first increment value
may be -33.00. The resulting offset value at the end of the
transmission delay interval is then —-342%33.0=-3,762. The
second increment value in this example is [-11,656—
(-3762)]/(1920/3-114) or approximately —15.008. If again
we allow a maximum error of 1%, 116, the increment error
may be as high as 116/526 Groups=0.22. The increment may
be specified with 2 fractional bits such that the maximum
error is 0.125. Thus the 2nd increment value may be —15.00.
The resulting offset value at the end of the first line is then
-3,762-526*15=11,652. The 3rd increment value should be
11,652/(1920/3*7) or approximately 2.6009. If the allowed
maximum error is for example 100, the increment error may
be as high as 100/(1920/3*7)=100/4,480 or approximately
0.0223. The increment may be specified with 5 fractional
bits such that the maximum error is 0.015625. The 3rd
increment may be specified as 2.59375 in base 10, or
10.10011 in base 2. The resulting final offset value at the end
of the slice is =11652+11620=-32. This is within the pos-
tulated acceptable limits.

The scale value generator 2514 may determine the scale
value 2510 in a similar fashion. In one implementation, the
scale factor 2510 may increase from 1.0 to 2.0 over the
course of 7%1920/3=4480 Groups. The increment may be
1/4480 or approximately 0.223215E-3. If the maximum
error of the final scale value in the negative direction is 0 and
the maximum error in the positive direction is for example
2%, the maximum increment error is 0.02/4480 or approxi-
mately 4.464E-6. This implies specifying the increment such
that its least significant bit corresponds to 2%**-18, resulting
in a maximum positive error of ~3.815E-6. The most sig-
nificant bit needed for the increment corresponds to 2**-13,
for a total of 6 significant bits. An adder accumulating such
an increment every group may use 20 bits.

Alternatively the calculation of the scale factor 2510 may
be updated less frequently, for example every 64 Groups. In
this case there are 7%(1920/3)/64=70 increment steps. In this
form, the increment value may be simply shifted left by 6
bits compared to the per-Group approach above, and the
accumulating adder may have 20-6=14 bits.

Another alternative approach to incrementing the scale
factor 2510 is to increment it by a simple constant such as
1 with an interval that is selected to produce the desired
results. For example, an 8 bit counter could be used to
calculate the values between 1.0 and 2.0. This counter could
be incremented for example every 4480/256 Groups i.e.
every 17.5 Groups, which may be closely approximated by
incrementing every 17 or 18 Groups with the interval
alternating each increment. Such an alternating interval may
be implemented with a 5 bit counter and small amount of
logic.

The same approach may be used for other specific design
parameters. For example, a bit rate of 8 bpp and a first line
allocation of 8+4=12 bpp. Many of the specific values in the
example above are replaced with values derived from these
parameters, and the operation may be substantially the same.

For utilization in a specific standard or product, the
relevant parameters may either be specified in advance and
built into the implementations, or alternatively one or more
parameters may be calculated in software and loaded into an
implementation. In one embodiment the encoder side of the
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system calculates the parameters and specifies them in a
configuration header which is transmitted along with each
picture, such that decoders may directly load and utilize the
values in the headers, without requiring software interaction
in the decoder side of the system.

FIG. 31 shows an example of substream demultiplexing
logic 3100 in a decoder. In the demultiplexing logic 3100, a
rate buffer 3102 feeds a demultiplexer 3104. The demulti-
plexer 3104 provides component (e.g., Y, Co, Cg) samples
to the funnel shifters 3106, 3108, and 3110. In turn, the
outputs of the funnel shifters 3106, 3108, and 3110 provide
data to the entropy decoders 3112, 3114, and 3116. The rate
control logic 3118 coordinates the operation of the entropy
decoders 3112, 3114, and 3116.

The demultiplexer 3104 receives requests from each
funnel shifter (3106, 3108 or 3110) that indicates that a mux
word is needed. The request signal is sent if the current
funnel shifter fullness minus the decoded syntax element
size is less than the maximum syntax element size. Either O,
1, 2, or 3 requests may occur for any given group time. If
multiple requests are asserted in a given group time, the
order of the mux words in a slice is muxWordY followed by
muxWordCo followed by muxWordCg.

If vbr_enable is equal to 0, the demultiplexer flushes any
zero-stuffing bits that were added at the end of a slice to pad
the slice to a total compressed size of ceil
(slice_width*slice_height*bits_per_pixel). If vbr_enable is
set to 1, then no stuffing bits are removed from the end of the
slice.

Entropy Decoding

The entropy decoders 3112-3116 parse the bits from the
incoming bitstream after demultiplexing. The picture layer
is demultiplexed to extract the slice layer bits for each slice.
The substream demultiplexer demultiplexes the slice layer
data into 3 substreams. The entropy decoder parses the
substream layer.

Each group in the substream layer may be processed
sequentially. Some groups have conditional bits at the begin-
ning of the luma unit associated with flatness determination.
Once each group has been processed, the entropy decoder
sends the residual and ICH index data to the pixel recon-
struction and ICH blocks. The entropy decoder outputs the
total number of bits parsed for the entire group (coded-
GroupSize) and the number of bits that would have been
used had the sizes been optimally predicted (rcSizeGroup) to
the rate control.

After each group is processed, the resulting residuals and
ICH selections are passed to the reconstruction and ICH
blocks.

Each line may start on a group boundary. If the slice width
is not evenly divisible by 3, the last group of each line may
contain fewer than 3 pixels. However, the entropy decoders
may still parse 3 residuals in P-mode and 3 history indices
in ICH-mode. Although no pixel data is produced for pixels
beyond the edge of the slice, the P-mode residuals are still
used for the purposes of calculating the next predicted size.

If the input rate buffer overflows, the decoder may treat
the overtlow as an error condition. The decoder may count
the bits as they are decoded, and may flag an error condition
if the entropy decoder attempts to parse bits beyond the end
of the slice data. The slice data length is either fixed (if
vbr_enable is set to 0) or is variable and communicated to
the decoder by the transport (if vbr_enable is set to 1).
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Rate Control

The rate control logic 3118 may implement the same rate
control as implemented in the encoder. The encoder and
decoder rate control produce the same QP values at every
group.

The decoder rate control logic 3118 may function as
though it were encoder rate control logic. For each group,
where the encoder encodes the group and adds the number
of'bits used to code the group to its buffer model fullness, the
decoder adds the same number of bits to its buffer model
fullness when it decodes the group. Both the encoder and
decoder RC algorithms subtract the same number of bits
when encoding or decoding the same group.

The decoder RC buffer model is the same as the encoder
RC buffer model. However the operating context of a
decoder is different from that of an encoder. The decoder has
a rate buffer 3102, which may be different than the encoder
buffer model.

A bitstream (minus the PPS) to be decoded enters the
decoder rate buffer 3102, and the decoder removes bits from
the rate buffer 3102 as the bits are decoded. This is opposite
to the sense in which the RC buffer model operates. At the
start of each slice, the decoder accumulates bits in its rate
buffer for initial_dec_delay group times before starting to
decode the slice. Once decoding begins, the RC function
behaves the same as in the encoder, including the function
of initial_enc_delay.

The flatness information is conveyed to the decoder RC
via the entropy decoders 3112-3116. The flatness informa-
tion for a given supergroup is signaled in the previous
supergroup to simplify the entropy decoding and timing. If
the flatnessFlag for a given supergroup is 0, no QP adjust-
ment is made. If the flatnessFlag is 1, the flatnessGroup
signals which of the 4 groups requires the QP adjustment
and flatnessType indicates whether the content is somewhat
flat or very flat. If the flatnessType is not explicitly signaled
in the bitstream because the QP was too low, the flat-
nessType is assumed to be 0 (somewhat flat). The adjust-
ment is done in exactly the same manner noted above for
flatness QP adjustment.

Line Storage

Like the encoder, the decoder may implement line stor-
age. The line storage in the decoder may be similar to, or the
same as, the line storage described above for the encoder.

Prediction and Reconstruction

The prediction and reconstruction functions in the
decoder may match the corresponding encoder functions.

Prediction Types

The decoder prediction types may be the same as those in
the encoder: MMAP, BP, and MPP.

Prediction Type Selection

The prediction type need not be explicitly signaled in the
bitstream, so both the encoder and decoder may follow
identical processes to determine which prediction type is
used for each group. If a decoder supports block prediction,
there may be logic to select between BP and MMAP; if the
decoder does not support block prediction or bp_enable is
set to 0 in the PPS, then BP is never selected and MMAP is
used. If the decoder does not support block prediction and
bp_enable is set to 1 in the PPS, the stream is not decodable,
and the decoder shall handle the error in an appropriate
manner.

Selection Between BP and MMAP

Encoders and decoders may perform the same algorithm
to select between BP and MMAP.
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Selection Between BP/MMAP and MPP

The selection between BP/MMAP and MPP may be
signaled in the bitstream. The size used for DSU-VLC
encoding determines whether MPP or BP/MMAP is used in
the decoder. If the size is equal to the maxBpc—qlLevel for
some component, that component is predicted using MPP
for all three samples in that group. Otherwise, BP or MMAP
is used for that component for all three samples in the group.

FIG. 32 shows indexed color history (ICH) logic 3200 in
a decoder. The decoder may have the same mapping of ICH
values to pixels as the encoder, for each group. The decoder
history buffer 3202 may be structured the same way as the
encoder history. The decode process for updating the ICH
may be the same as the encoder process for updating the
ICH.

For each group, the entropy coding indicates whether ICH
is selected or not. If ICH is selected, three history indices are
provided by the entropy decoder as well. Both the encoder
and decoder may maintain identical ICH state, so the update
process may follow the process identified above.

Color Space Conversion

The display stream coding may utilize components that
are labeled Y, Co, and Cg, or it may utilize components that
are labeled Y, Cb and Cr. If the convert_rgb flag is equal to
0 in the current PPS, the decoder may produce YCbCr output
without performing color space conversion. The Cb com-
ponent may be mapped to the Co component label. The Cr
component may be mapped to the Cg component label. In
this case, the bit depth of the Cb/Co and Cr/Cg components
may be equal to the Y component, whose bit depth is
specified using the bits_per_component field in the current
PPS.

If the convert_rgb flag is equal to 1 in the current PPS, the
decoder performs color-space conversion from YCoCg to
RGB. First, the Co and Cg values may be re-centered around
0:

cseCg=Cg—(1<<bits_per_component)

cseCo=Co—(1<<bits_per_component)

where bits_per_component is the number of bits of each of
the R, G and B components, which is one less than the
number of bits per component for the Co and Cg compo-
nents.

The final CSC may be:

t=y—(cscCg>>1)
cscG=cscCg+t
cseB=t—(cscCo>>1)

cscR=cscCo+cscB
The final R, G, and B values may be range limited:

R=CLAMP(cscR,0,maxVal)
G=CLAMP(cscG,0,maxVal)
B=CLAMP(cscB,0,maxVal)

where maxVal=((1<<bits_per_component)-1).

If a slice extends beyond the right edge of a picture, the
resulting decoded pixels may be discarded. If a slice extends
beyond the bottom edge of a picture, the resulting decoded
pixels may be discarded.

Error Handling

If an error condition is detected, the decoder may output
pixel data until the end of the slice. Such pixel data may have
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any arbitrary value. The decoder may discard any com-
pressed bits in the rate buffer remaining in the slice. The
decoder may resume decoding with the next slice, and
occurrence of an error in a slice need not affect decoding of
any other slice.

The methods, devices, and logic described above may be
implemented in many different ways in many different
combinations of hardware, software or both hardware and
software. For example, all or parts of the system may include
circuitry in a controller, a microprocessor, or an application
specific integrated circuit (ASIC), or may be implemented
with discrete logic or components, or a combination of other
types of analog or digital circuitry, combined on a single
integrated circuit or distributed among multiple integrated
circuits. All or part of the logic described above may be
implemented as instructions for execution by a processor,
controller, or other processing device and may be stored in
a tangible or non-transitory machine-readable or computer-
readable medium such as flash memory, random access
memory (RAM) or read only memory (ROM), erasable
programmable read only memory (EPROM) or other
machine-readable medium such as a compact disc read only
memory (CDROM), or magnetic or optical disk. Thus, a
product, such as a computer program product, may include
a storage medium and computer readable instructions stored
on the medium, which when executed in an endpoint,
computer system, or other device, cause the device to
perform operations according to any of the description
above.

The processing capability of the system may be distrib-
uted among multiple system components, such as among
multiple processors and memories, optionally including
multiple distributed processing systems. Parameters, data-
bases, and other data structures may be separately stored and
managed, may be incorporated into a single memory or
database, may be logically and physically organized in many
different ways, and may implemented in many ways, includ-
ing data structures such as linked lists, hash tables, or
implicit storage mechanisms. Programs may be parts (e.g.,
subroutines) of a single program, separate programs, dis-
tributed across several memories and processors, or imple-
mented in many different ways, such as in a library, such as
a shared library (e.g., a dynamic link library (DLL)). The
DLL, for example, may store code that performs any of the
system processing described above.

Various implementations have been specifically
described. However, many other implementations are also
possible.

What is claimed is:

1. A video-coding method comprising:

obtaining a fullness value for a buffer;

applying a transformation to the fullness value to obtain
a transformed fullness, where applying the transforma-
tion comprising:

applying a piecewise linear offset value to the fullness
value; and

applying a piecewise linear scale factor to the fullness
value;

making a quantization decision responsive to the trans-
formed fullness; and

coding data for a portion of an image in the buffer
according to the quantization decision.

2. The video-coding method of claim 1, where making the

quantization decision comprises:

determining a target number of bits per unit of data to be

coded.
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3. The video-coding method of claim 1, where making the
quantization decision comprises:
allocating a selected number of bits per unit of data to be
coded for a first image line; and
allocating fewer than the selected number of bits per unit
of data to be coded for a different image line subsequent
to the first image line.
4. The video-coding method of claim 1, where making the
quantization decision comprises:
allocating, for a first unit of data additional coding bits
than are allocated for a second unit of data with more
prediction information than the first unit of data.
5. The video-coding method of claim 1, where coding
comprises:
coding a line of an image slice.
6. A video-coding system comprising:
a buffer operable to store coding units to be coded;
transformation circuitry configured to:
obtain a fullness value for the buffer; and
apply a transformation to the fullness value to obtain a
transformed buffer fullness, where the transformation
comprises:
a piecewise linear offset value applied to the fullness
value; and
a piecewise linear scale factor applied to the fullness
value;
quantization adjustment circuitry configured to, respon-
sive to the transformed buffer fullness:
allocate a number of target bits for coding the coding units
that varies responsive to an amount of prediction infor-
mation that is available for the coding units; and
coding circuitry configured to code data for a coding unit
of an image in the buffer according to the number of
target bits.
7. The video-coding system of claim 6, where:
the quantization adjustment circuitry comprises a map-
ping of transformed buffer fullness to a quantization
output.
8. The video-coding system of claim 7, where:
the quantization output comprises:
a minimum quantization parameter; and
a maximum quantization parameter.
9. The video-coding system of claim 7, where:
the quantization adjustment circuitry comprises:
long term quantization parameter selection circuitry con-
figured to map the transformed buffer fullness to a first
quantization output according to multiple transformed
buffer fullness ranges defined by the long term quan-
tization parameter selection circuitry.
10. The video-coding system of claim 9, where:
the quantization adjustment circuitry further comprises:
short term quantization parameter adjustment circuitry
configured to receive the quantization output from the
long term quantization parameter selection circuitry,
and responsively determine a different, second quanti-
zation output.
11. A video-coding system comprising:
buffer level tracker circuitry comprising a buffer fullness
output;
linear transformation circuitry coupled with the buffer
fullness output and comprising:
an offset value generator comprising an offset value
output comprising a piecewise linear offset value;
a scale value generator comprising a scale value output
comprising a piecewise linear scale value; and
transformation circuitry configured to apply a linear trans-
formation to the buffer fullness output responsive to the
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offset value output and the scale value output, to obtain
a modified buffer fullness output;

multiple stage quantization selection circuitry compris-

ing:

a mapping of modified buffer fullness to a quantization

parameter range; and

parameter adjustment circuitry configured to obtain a

quantization parameter within the quantization param-
eter range responsive to a prior coding result and a prior
value of the quantization parameter; and

coding circuitry configured to code data for a portion of

an image in the buffer according to the quantization
parameter.

12. The video-coding system of claim 11, where:

the linear transformation is configured to cause additional

bits per pixel to be allocated to an image line without
prediction information, as compared to subsequent
image lines with prediction information.

13. The video-coding method of claim 1, further com-
prising where making the quantization decision comprises
selecting a quantization output responsive to a mapping of
the transformed fullness to the quantization output.

14. The video-coding method of claim 13, where:

the quantization output comprises:

a minimum quantization parameter; and

a maximum quantization parameter.

15. The video-coding method of claim 13, where selecting
the quantization output comprises mapping the transformed
buffer fullness to a first quantization output according to
multiple transformed buffer fullness ranges defined for long
term quantization parameter control.

16. The video-coding method of claim 15, further com-
prising determining a different, second quantization output
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responsive to the first quantization output and a buffer
fullness range defined for defined for short term quantization
parameter control.

17. The video-coding method of claim 1, where:

obtaining the fullness value for the buffer comprises

obtaining a fullness value for the buffer that falls
outside of a pre-determined valid range of fullness for
the buffer; and

applying the transformation to the fullness value to obtain

the transformed fullness comprises applying the trans-
formation to the fullness value to obtain a transformed
fullness within the pre-determined valid range.

18. The video-coding system of claim 6, where the
quantization adjustment circuitry is configured to allocate a
number of target bits for coding the coding units that varies
responsive to the amount of prediction information that is
available for the coding units by:

allocating a selected number of bits per unit of data to be

coded for a first image line; and

allocating fewer than the selected number of bits per unit

of data to be coded for a different image line subsequent
to the first image line.

19. The video-coding system of claim 6, where the
quantization adjustment circuitry is configured to allocate a
number of target bits for coding the coding units that varies
responsive to the amount of prediction information that is
available for the coding units by: allocating, for a first
coding unit additional coding bits than are allocated for a
second coding unit with more prediction information than
the first coding unit.

20. The video-coding system of claim 6, further compris-
ing coding circuitry configured to code data for a coding unit
of'an image by coding a line of an image slice in accord with
the number of target bits.
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